Objective: To characterize patients with acute ischemic stroke related to SARS-CoV-2 infection and assess the classification performance of clinical and laboratory parameters in predicting in-hospital outcome of these patients. Methods: In the setting of the STROKOVID study including patients with acute ischemic stroke consecutively admitted to the ten hub hospitals in Lombardy, Italy, between March 8 and April 30, 2020, we compared clinical features of patients with confirmed infection and non-infected patients by logistic regression models and survival analysis. Then, we trained and tested a random forest (RF) binary classifier for the prediction of in-hospital death among patients with COVID-19. Results: Among 1013 patients, 160 (15.8%) had SARS-CoV-2 infection. Male sex (OR 1.53; 95% CI 1.06–2.27) and atrial fibrillation (OR 1.60; 95% CI 1.05–2.43) were independently associated with COVID-19 status. Patients with COVID-19 had increased stroke severity at admission [median NIHSS score, 9 (25th to75th percentile, 13) vs 6 (25th to75th percentile, 9)] and increased risk of in-hospital death (38.1% deaths vs 7.2%; HR 3.30; 95% CI 2.17–5.02). The RF model based on six clinical and laboratory parameters exhibited high cross-validated classification accuracy (0.86) and precision (0.87), good recall (0.72) and F1-score (0.79) in predicting in-hospital death. Conclusions: Ischemic strokes in COVID-19 patients have distinctive risk factor profile and etiology, increased clinical severity and higher in-hospital mortality rate compared to non-COVID-19 patients. A simple model based on clinical and routine laboratory parameters may be useful in identifying ischemic stroke patients with SARS-CoV-2 infection who are unlikely to survive the acute phase.

SARS-CoV-2 infection and acute ischemic stroke in Lombardy, Italy

Pezzini A.;Locatelli M.;Masciocchi S.;Cortinovis M.;Mazzoleni V.;Pezzini D.;Bonacina S.;Pilotto A.;Benussi A.;Magoni M.;Premi E.;De Giuli V.;Giossi A.;Ciccone A.;Sessa M.;Padovani A.
2021-01-01

Abstract

Objective: To characterize patients with acute ischemic stroke related to SARS-CoV-2 infection and assess the classification performance of clinical and laboratory parameters in predicting in-hospital outcome of these patients. Methods: In the setting of the STROKOVID study including patients with acute ischemic stroke consecutively admitted to the ten hub hospitals in Lombardy, Italy, between March 8 and April 30, 2020, we compared clinical features of patients with confirmed infection and non-infected patients by logistic regression models and survival analysis. Then, we trained and tested a random forest (RF) binary classifier for the prediction of in-hospital death among patients with COVID-19. Results: Among 1013 patients, 160 (15.8%) had SARS-CoV-2 infection. Male sex (OR 1.53; 95% CI 1.06–2.27) and atrial fibrillation (OR 1.60; 95% CI 1.05–2.43) were independently associated with COVID-19 status. Patients with COVID-19 had increased stroke severity at admission [median NIHSS score, 9 (25th to75th percentile, 13) vs 6 (25th to75th percentile, 9)] and increased risk of in-hospital death (38.1% deaths vs 7.2%; HR 3.30; 95% CI 2.17–5.02). The RF model based on six clinical and laboratory parameters exhibited high cross-validated classification accuracy (0.86) and precision (0.87), good recall (0.72) and F1-score (0.79) in predicting in-hospital death. Conclusions: Ischemic strokes in COVID-19 patients have distinctive risk factor profile and etiology, increased clinical severity and higher in-hospital mortality rate compared to non-COVID-19 patients. A simple model based on clinical and routine laboratory parameters may be useful in identifying ischemic stroke patients with SARS-CoV-2 infection who are unlikely to survive the acute phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/551117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact