Research on compostable bioplastics has recently obtained performances comparable to traditional plastics, like water vapor permeability, sealability, and UV transmission. Therefore, it is crucial to create new tools that help the developers of new polymeric composites study them quickly and cost-effectively. In this work, Raman spectroscopy (RS) was proposed as a versatile tool to investigate the degradation of biobased plastics after a stress test in water: this approach is a novelty for food packaging. Treatments at room temperature (RT) and 80◦ C were selected, considering that these biopolymers can be used to packaging ready meals. The investigation was carried out on single-layer sheets of poly-lactic acid (PLA), cellulose ester (CE), poly-butylene succinate (PBS), polybutylene adipate-co-terephthalate (PBAT), and a new composite material obtained by coupling CE and PBS (BB951) and PLA and CE (BB961). The vibrational modes of the water-treated materials at RT and 80◦ C were compared to the Raman spectra of the pristine bioplastic, and the morphologies of the polymers were analyzed by scanning electron microscopy (SEM) and optical microscopy. Composite sheets were the plastics which were mostly affected by the 80◦ C treatment in water, through changes in morphology (wrinkling with alternate white and transparent zones), as was especially the case for BB951. The Raman spectra acquired in different zones showed that the vibrations of BB951 were generally maintained in transparent zones but reduced or lacking in white zones. At the same time, the single-layer materials were almost unchanged. For BB961, the Raman vibrations were only slightly modified, in agreement with the visual inspection. The results suggest that RS detects the specific chemical bond that was modified, helping us understand the degradation process of biobased plastics after water treatment.

Study of the degradation of biobased plastic after stress tests in water

Ambrosio G.;Faglia G.;Baratto C.
2021-01-01

Abstract

Research on compostable bioplastics has recently obtained performances comparable to traditional plastics, like water vapor permeability, sealability, and UV transmission. Therefore, it is crucial to create new tools that help the developers of new polymeric composites study them quickly and cost-effectively. In this work, Raman spectroscopy (RS) was proposed as a versatile tool to investigate the degradation of biobased plastics after a stress test in water: this approach is a novelty for food packaging. Treatments at room temperature (RT) and 80◦ C were selected, considering that these biopolymers can be used to packaging ready meals. The investigation was carried out on single-layer sheets of poly-lactic acid (PLA), cellulose ester (CE), poly-butylene succinate (PBS), polybutylene adipate-co-terephthalate (PBAT), and a new composite material obtained by coupling CE and PBS (BB951) and PLA and CE (BB961). The vibrational modes of the water-treated materials at RT and 80◦ C were compared to the Raman spectra of the pristine bioplastic, and the morphologies of the polymers were analyzed by scanning electron microscopy (SEM) and optical microscopy. Composite sheets were the plastics which were mostly affected by the 80◦ C treatment in water, through changes in morphology (wrinkling with alternate white and transparent zones), as was especially the case for BB951. The Raman spectra acquired in different zones showed that the vibrations of BB951 were generally maintained in transparent zones but reduced or lacking in white zones. At the same time, the single-layer materials were almost unchanged. For BB961, the Raman vibrations were only slightly modified, in agreement with the visual inspection. The results suggest that RS detects the specific chemical bond that was modified, helping us understand the degradation process of biobased plastics after water treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/550239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact