This paper investigates the capability of a surrogate-based optimization technique for the advanced design of centrifugal pumps. The centrifugal pump considered in this work is designed for the automotive cooling system and consists of an impeller, a vaneless diffuser and a volute. A fully three-dimensional geometry parametrization based on Bézier surfaces is presented. The optimization procedure includes the following software packages: Scilab for the geometric parametrization, Ansys-CFX for the CFD simulations and DAKOTA for the optimization management. The initial geometry is defined by a 0D code that provides a preliminary design of the pump, given the operating conditions, i.e., the volumetric flow rate, the head and the rotating speed. In this work an operative point typical of high performance gasoline cars is considered.
Surrogate-based optimization of a centrifugal pump with volute casing for an automotive engine cooling system
Fracassi A.
;Ghidoni A.;Morelli A.;Noventa G.
2021-01-01
Abstract
This paper investigates the capability of a surrogate-based optimization technique for the advanced design of centrifugal pumps. The centrifugal pump considered in this work is designed for the automotive cooling system and consists of an impeller, a vaneless diffuser and a volute. A fully three-dimensional geometry parametrization based on Bézier surfaces is presented. The optimization procedure includes the following software packages: Scilab for the geometric parametrization, Ansys-CFX for the CFD simulations and DAKOTA for the optimization management. The initial geometry is defined by a 0D code that provides a preliminary design of the pump, given the operating conditions, i.e., the volumetric flow rate, the head and the rotating speed. In this work an operative point typical of high performance gasoline cars is considered.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.