Nonlinear metasurfaces constitute a key asset in meta-optics, given their ability to scale down nonlinear optics to sub-micrometer thicknesses. To date, nonlinear metasurfaces have been mainly realized using narrow band gap semiconductors, with operation limited to the near-infrared range. Nonlinear meta-optics in the visible range can be realized using transparent materials with high refractive index, such as lithium niobate (LiNbO3). Yet, efficient operation in this strategic spectral window has been so far prevented by the nanofabrication challenges associated with LiNbO3, which considerably limit the aspect ratio and minimum size of the nanostructures (i.e., meta-atoms). Here we demonstrate the first monolithic nonlinear periodic metasurface based on LiNbO3 and operating in the visible range. Realized through ion beam milling, our metasurface features a second-harmonic (SH) conversion efficiency of 2.40 × 10-8 at a pump intensity as low as 0.5 GW/cm2. By tuning the pump polarization, we demonstrate efficient steering and polarization encoding into narrow SH diffraction orders, opening novel opportunities for polarization-encoded nonlinear meta-optics.

Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic LiNbO3Metasurface

Carletti L.;Moia F.;De Angelis C.;Celebrano M.
2021-01-01

Abstract

Nonlinear metasurfaces constitute a key asset in meta-optics, given their ability to scale down nonlinear optics to sub-micrometer thicknesses. To date, nonlinear metasurfaces have been mainly realized using narrow band gap semiconductors, with operation limited to the near-infrared range. Nonlinear meta-optics in the visible range can be realized using transparent materials with high refractive index, such as lithium niobate (LiNbO3). Yet, efficient operation in this strategic spectral window has been so far prevented by the nanofabrication challenges associated with LiNbO3, which considerably limit the aspect ratio and minimum size of the nanostructures (i.e., meta-atoms). Here we demonstrate the first monolithic nonlinear periodic metasurface based on LiNbO3 and operating in the visible range. Realized through ion beam milling, our metasurface features a second-harmonic (SH) conversion efficiency of 2.40 × 10-8 at a pump intensity as low as 0.5 GW/cm2. By tuning the pump polarization, we demonstrate efficient steering and polarization encoding into narrow SH diffraction orders, opening novel opportunities for polarization-encoded nonlinear meta-optics.
File in questo prodotto:
File Dimensione Formato  
2021-ACSPhotonics-LiNbO.pdf

Open Access dal 20/02/2022

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.08 MB
Formato Adobe PDF
4.08 MB Adobe PDF Visualizza/Apri
SHG_in_LiNbO3_metasurface.pdf

accesso aperto

Descrizione: Pre-print pre-referaggio
Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 5.67 MB
Formato Adobe PDF
5.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/549396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 70
social impact