In this work, we study a thermoelastic Bresse system from both mathematical and numerical points of view. The dual-phase-lag heat conduction theory is used to model the heat transfer. An existence and uniqueness result is obtained by using the theory of linear semigroups. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A priori error estimates are shown, from which the linear convergence is derived under suitable regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution with respect to a constitutive parameter.
Thermoelastic Bresse system with dual-phase-lag model
Bochicchio I.;Naso M. G.
2021-01-01
Abstract
In this work, we study a thermoelastic Bresse system from both mathematical and numerical points of view. The dual-phase-lag heat conduction theory is used to model the heat transfer. An existence and uniqueness result is obtained by using the theory of linear semigroups. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A priori error estimates are shown, from which the linear convergence is derived under suitable regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximation and the behavior of the solution with respect to a constitutive parameter.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.