UNS N06625 is a nickel-based superalloy used for oil and gas applications and commonly produced according to NACE MR0175 in the annealed/solution annealed condition. The annealing/solution annealing treatment makes the material corrosion resistant in the most challenging environments, in the presence of sulfides and chlorides at high pressure and temperature. However, thanks to its chemical composition, UNS N06625 can also be considered as an age-hardenable material whose mechanical strength can be improved by promoting the metastable second phase gamma'' precipitation into the gamma matrix. However, the corrosion behavior of the aged alloy has never been investigated in NACE environments. This paper aims to understand the suitability of the age-hardened condition of UNS N06625 for oil and gas applications through the evaluation of the material corrosion performance in NACE level VII environments by using NACE TM0177 tests. Three heats of UNS N06625 have been produced and forged in different bar diameters: 152 mm (6 in), 203.2 mm (8 in), and 254 mm (10 in). Afterward, the bars have been annealed and age-hardened according to optimized time-temperature parameters and finally tested to assess their mechanical properties and resistance to stress corrosion cracking, sulfide stress cracking, galvanic-induced hydrogen stress cracking, and hydrogen embrittlement.

Evaluation of Stress Corrosion Cracking, Sulfide Stress Cracking, Galvanic-Induced Hydrogen Stress Cracking, and Hydrogen Embrittlement Resistance of Aged UNS N06625 Forged Bars

Febbrari, A
;
Brognoli, E;Gelfi, M;Pola, A
2020-01-01

Abstract

UNS N06625 is a nickel-based superalloy used for oil and gas applications and commonly produced according to NACE MR0175 in the annealed/solution annealed condition. The annealing/solution annealing treatment makes the material corrosion resistant in the most challenging environments, in the presence of sulfides and chlorides at high pressure and temperature. However, thanks to its chemical composition, UNS N06625 can also be considered as an age-hardenable material whose mechanical strength can be improved by promoting the metastable second phase gamma'' precipitation into the gamma matrix. However, the corrosion behavior of the aged alloy has never been investigated in NACE environments. This paper aims to understand the suitability of the age-hardened condition of UNS N06625 for oil and gas applications through the evaluation of the material corrosion performance in NACE level VII environments by using NACE TM0177 tests. Three heats of UNS N06625 have been produced and forged in different bar diameters: 152 mm (6 in), 203.2 mm (8 in), and 254 mm (10 in). Afterward, the bars have been annealed and age-hardened according to optimized time-temperature parameters and finally tested to assess their mechanical properties and resistance to stress corrosion cracking, sulfide stress cracking, galvanic-induced hydrogen stress cracking, and hydrogen embrittlement.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/547215
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact