Head pose is an important cue in computer vision when using facial information. Over the last three decades, methods for head pose estimation have received increasing attention due to their application in several image analysis tasks. Although many techniques have been developed in the years to address this issue, head pose estimation remains an open research topic, particularly in unconstrained environments. In this paper, we present a comprehensive survey focusing on methods under both constrained and unconstrained conditions, focusing on the literature from the last decade. This work illustrates advantages and disadvantages of existing algorithms, starting from seminal contributions to head pose estimation, and ending with the more recent approaches which adopted deep learning frameworks. Several performance comparison are provided. This paper also states promising directions for future research on the topic.

Head pose estimation: A survey of the last ten years

Leonardi, Riccardo;Migliorati, Pierangelo;Benini, Sergio
Conceptualization
2021-01-01

Abstract

Head pose is an important cue in computer vision when using facial information. Over the last three decades, methods for head pose estimation have received increasing attention due to their application in several image analysis tasks. Although many techniques have been developed in the years to address this issue, head pose estimation remains an open research topic, particularly in unconstrained environments. In this paper, we present a comprehensive survey focusing on methods under both constrained and unconstrained conditions, focusing on the literature from the last decade. This work illustrates advantages and disadvantages of existing algorithms, starting from seminal contributions to head pose estimation, and ending with the more recent approaches which adopted deep learning frameworks. Several performance comparison are provided. This paper also states promising directions for future research on the topic.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0923596521002332-main.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/547196
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 14
social impact