In many dynamical state estimation problems, not all the values that the state can take have the same importance; hence, missing to deliver an appropriate estimate has more severe consequences for certain state values than for others. In many applications, such important state values correspond to events that have low a priori probability to happen (e.g., unsafe situations or conditions that one tries to avoid by design). Provably, Kalman filtering techniques are inadequate to correctly estimate such rare events. In this paper, a new state estimation paradigm is introduced to build confidence regions that contain the true state value, whatever this value is, with a user-chosen probability. Among regions having this property, an algorithm is introduced that generates in a Gaussian setup the region that satisfies a minimum-volume condition.

State Conditional Filtering

Care', Algo;Campi, M. C.
;
2021-01-01

Abstract

In many dynamical state estimation problems, not all the values that the state can take have the same importance; hence, missing to deliver an appropriate estimate has more severe consequences for certain state values than for others. In many applications, such important state values correspond to events that have low a priori probability to happen (e.g., unsafe situations or conditions that one tries to avoid by design). Provably, Kalman filtering techniques are inadequate to correctly estimate such rare events. In this paper, a new state estimation paradigm is introduced to build confidence regions that contain the true state value, whatever this value is, with a user-chosen probability. Among regions having this property, an algorithm is introduced that generates in a Gaussian setup the region that satisfies a minimum-volume condition.
File in questo prodotto:
File Dimensione Formato  
State_Conditional_Filtering.pdf

solo utenti autorizzati

Descrizione: Post-print dell'autore
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/546236
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact