Fuzzy sets represent an extension of the concept of set, used to mathematically model veiled and indefinite concepts, such as those of youth, poverty, customer satisfaction and so on. Fuzzy theory introduces a membership function, expressing the degree of membership of the elements to a set. Intuitionistic fuzzy sets and hesitant fuzzy sets are two extensions of the theory of fuzzy sets, in which non-membership degrees and hesitations expressed by a set of experts are, respectively, introduced. In this paper, we apply intuitionistic fuzzy sets to questionnaire analysis, with a focus on the construction of membership, non-membership and uncertainty functions. We also suggest the possibility of considering intuitionistic hesitant fuzzy sets as a valuable theoretical framework. We apply these models to the evaluation of a Public Administration and we assess our results through a sensitivity analysis.
Intuitionistic fuzzy sets in questionnaire analysis
MARASINI, DONATA;RIPAMONTI, ENRICO
2016-01-01
Abstract
Fuzzy sets represent an extension of the concept of set, used to mathematically model veiled and indefinite concepts, such as those of youth, poverty, customer satisfaction and so on. Fuzzy theory introduces a membership function, expressing the degree of membership of the elements to a set. Intuitionistic fuzzy sets and hesitant fuzzy sets are two extensions of the theory of fuzzy sets, in which non-membership degrees and hesitations expressed by a set of experts are, respectively, introduced. In this paper, we apply intuitionistic fuzzy sets to questionnaire analysis, with a focus on the construction of membership, non-membership and uncertainty functions. We also suggest the possibility of considering intuitionistic hesitant fuzzy sets as a valuable theoretical framework. We apply these models to the evaluation of a Public Administration and we assess our results through a sensitivity analysis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.