In this paper we consider the problem of measuring latent variables with ordinal scales and we put forward an original approach to this issue, which combines the use of Intuitionistic Fuzzy Sets with the calculation of bipolar means and bipolar distributions. Intuitionistic Fuzzy theory allows a researcher to model the degree of membership and non-membership to a certain fuzzy set, as well as the residual uncertainty. It is fundamental, for decision making, to properly model such source of variability. We focus on the definition of uncertainty, using bipolar distributions and introducing Intuitionistic Bipolar Fuzzy Sets. This allows us to distinguish between a negative and a positive component of uncertainty, which represents a novelty in Intuitionistic Fuzzy analysis. We apply this method to a national evaluation survey (The Magellano Project) proposed by the Italian Ministry of Public Administration, aimed at involving employees in management decision.

Bipolar distributions in fuzzy sets theory

MARASINI, DONATA;RIPAMONTI, ENRICO
2015-01-01

Abstract

In this paper we consider the problem of measuring latent variables with ordinal scales and we put forward an original approach to this issue, which combines the use of Intuitionistic Fuzzy Sets with the calculation of bipolar means and bipolar distributions. Intuitionistic Fuzzy theory allows a researcher to model the degree of membership and non-membership to a certain fuzzy set, as well as the residual uncertainty. It is fundamental, for decision making, to properly model such source of variability. We focus on the definition of uncertainty, using bipolar distributions and introducing Intuitionistic Bipolar Fuzzy Sets. This allows us to distinguish between a negative and a positive component of uncertainty, which represents a novelty in Intuitionistic Fuzzy analysis. We apply this method to a national evaluation survey (The Magellano Project) proposed by the Italian Ministry of Public Administration, aimed at involving employees in management decision.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact