Purpose: Genetic testing in hypertrophic cardiomyopathy (HCM) has long relied on Sanger sequencing of sarcomeric genes. The advent of next-generation sequencing (NGS) has catalyzed routine testing of additional genes of dubious HCM-causing potential. We used 19 years of genetic testing results to define a reliable set of genes implicated in Mendelian HCM and assess the value of expanded NGS panels. Methods: We dissected genetic testing results from 1,198 single-center HCM probands and devised a widely applicable score to similar to identify which genes yield effective results in the diagnostic setting. Results: Compared with early panels targeting only fully validated sarcomeric HCM genes, expanded NGS panels allow the prompt recognition of probands with HCM-mimicking diseases. Scoring by "diagnostic effectiveness" highlighted that PLN should also be routinely screened besides historically validated genes for HCM and its mimics. Conclusion: The additive value of expanded panels in HCM genetic testing lies in the systematic screening of genes associated with HCM mimics, requiring different patient management. Only variants in a limited set of genes are highly actionable and interpretable in the clinic, suggesting that larger panels offer limited additional sensitivity. A score estimating the relative effectiveness of a given gene's inclusion in diagnostic panels is proposed.

Defining the diagnostic effectiveness of genes for inclusion in panels: the experience of two decades of genetic testing for hypertrophic cardiomyopathy at a single center

Mazzarotto F;
2019-01-01

Abstract

Purpose: Genetic testing in hypertrophic cardiomyopathy (HCM) has long relied on Sanger sequencing of sarcomeric genes. The advent of next-generation sequencing (NGS) has catalyzed routine testing of additional genes of dubious HCM-causing potential. We used 19 years of genetic testing results to define a reliable set of genes implicated in Mendelian HCM and assess the value of expanded NGS panels. Methods: We dissected genetic testing results from 1,198 single-center HCM probands and devised a widely applicable score to similar to identify which genes yield effective results in the diagnostic setting. Results: Compared with early panels targeting only fully validated sarcomeric HCM genes, expanded NGS panels allow the prompt recognition of probands with HCM-mimicking diseases. Scoring by "diagnostic effectiveness" highlighted that PLN should also be routinely screened besides historically validated genes for HCM and its mimics. Conclusion: The additive value of expanded panels in HCM genetic testing lies in the systematic screening of genes associated with HCM mimics, requiring different patient management. Only variants in a limited set of genes are highly actionable and interpretable in the clinic, suggesting that larger panels offer limited additional sensitivity. A score estimating the relative effectiveness of a given gene's inclusion in diagnostic panels is proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 57
social impact