Let Γ(n, k) be the Grassmann graph formed by the k- dimensional subspaces of a vector space of dimension n over a field F and, for t ∈ N {0}, let Δ t (n, k) be the subgraph of Γ(n, k) formed by the set of linear [n, k]-codes having minimum dual distance at least t +1. We show that if |F| ≥ nt then Δ t (n, k) is connected and it is isometrically embedded in Γ(n, k).
On the Grassmann graph of linear codes
Giuzzi, Luca;
2021-01-01
Abstract
Let Γ(n, k) be the Grassmann graph formed by the k- dimensional subspaces of a vector space of dimension n over a field F and, for t ∈ N {0}, let Δ t (n, k) be the subgraph of Γ(n, k) formed by the set of linear [n, k]-codes having minimum dual distance at least t +1. We show that if |F| ≥ nt then Δ t (n, k) is connected and it is isometrically embedded in Γ(n, k).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1071579721000897-main.pdf
solo utenti autorizzati
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
370.68 kB
Formato
Adobe PDF
|
370.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2005.04402.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
191.33 kB
Formato
Adobe PDF
|
191.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.