Let $Gamma$ be an embeddable non-degenerate polar space of finite rank $n geq 2$. Assuming that $Gamma$ admits the universal embedding (which is true for all embeddable polar spaces except grids of order at least $5$ and certain generalized quadrangles defined over quaternion division rings), let $arepsilon:Gamma omathrm{PG}(V)$ be the universal embedding of $Gamma$. Let $cal S$ be a subspace of $Gamma$ and suppose that $cal S$, regarded as a polar space, has non-degenerate rank at least $2$. We shall prove that $cal S$ is the $arepsilon$-preimage of a projective subspace of $mathrm{PG}(V)$.

Nearly all subspaces of a classical polar space arise from its universal embedding

Giuzzi, L.;
2021-01-01

Abstract

Let $Gamma$ be an embeddable non-degenerate polar space of finite rank $n geq 2$. Assuming that $Gamma$ admits the universal embedding (which is true for all embeddable polar spaces except grids of order at least $5$ and certain generalized quadrangles defined over quaternion division rings), let $arepsilon:Gamma omathrm{PG}(V)$ be the universal embedding of $Gamma$. Let $cal S$ be a subspace of $Gamma$ and suppose that $cal S$, regarded as a polar space, has non-degenerate rank at least $2$. We shall prove that $cal S$ is the $arepsilon$-preimage of a projective subspace of $mathrm{PG}(V)$.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024379521002482-main.pdf

solo utenti autorizzati

Descrizione: post-print
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 464.57 kB
Formato Adobe PDF
464.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2010.07640.pdf

accesso aperto

Licenza: DRM non definito
Dimensione 249.16 kB
Formato Adobe PDF
249.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact