Let $Gamma$ be an embeddable non-degenerate polar space of finite rank $n geq 2$. Assuming that $Gamma$ admits the universal embedding (which is true for all embeddable polar spaces except grids of order at least $5$ and certain generalized quadrangles defined over quaternion division rings), let $arepsilon:Gamma omathrm{PG}(V)$ be the universal embedding of $Gamma$. Let $cal S$ be a subspace of $Gamma$ and suppose that $cal S$, regarded as a polar space, has non-degenerate rank at least $2$. We shall prove that $cal S$ is the $arepsilon$-preimage of a projective subspace of $mathrm{PG}(V)$.
Nearly all subspaces of a classical polar space arise from its universal embedding
Giuzzi, L.;
2021-01-01
Abstract
Let $Gamma$ be an embeddable non-degenerate polar space of finite rank $n geq 2$. Assuming that $Gamma$ admits the universal embedding (which is true for all embeddable polar spaces except grids of order at least $5$ and certain generalized quadrangles defined over quaternion division rings), let $arepsilon:Gamma omathrm{PG}(V)$ be the universal embedding of $Gamma$. Let $cal S$ be a subspace of $Gamma$ and suppose that $cal S$, regarded as a polar space, has non-degenerate rank at least $2$. We shall prove that $cal S$ is the $arepsilon$-preimage of a projective subspace of $mathrm{PG}(V)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0024379521002482-main.pdf
solo utenti autorizzati
Descrizione: post-print
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
464.57 kB
Formato
Adobe PDF
|
464.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2010.07640.pdf
accesso aperto
Licenza:
DRM non definito
Dimensione
249.16 kB
Formato
Adobe PDF
|
249.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.