The use of vegetation for the energy efficiency of buildings is an increasingly widespread practice; therefore, the possibility of representing these systems correctly with the use of simulation software is essential. VGS performances have been widely studied, but currently, the lack of a unique simulation method to assess the efficiency of different types of VGS and the absence of studies evaluating the performances of all the systems available, proposing simulation models for each of them, leads to an incomplete energy representation. The aim of this study is to achieve a consistent and complete simulation method, comparing the different systems’ performances. The research is made up of five main steps. Firstly, a classification to group these systems into specific categories was proposed; secondly an in-depth analysis of existing literature was worked out to establish the methods used for different types of VGS. The study of plant physiology allowed the definition of an energy balance, which is valid for all vegetated surfaces; then, each category was associated to a mathematical formula and finally integrated into the EnergyPlus software. The results achieved for each model were compared evaluating two important parameters for the termohygrometric conditions control: outside walls face temperatures and operative temperatures.

Simulating and Comparing Different Vertical Greenery Systems Grouped into Categories Using EnergyPlus

Arenghi Alberto
;
Caffi Marco
2021-01-01

Abstract

The use of vegetation for the energy efficiency of buildings is an increasingly widespread practice; therefore, the possibility of representing these systems correctly with the use of simulation software is essential. VGS performances have been widely studied, but currently, the lack of a unique simulation method to assess the efficiency of different types of VGS and the absence of studies evaluating the performances of all the systems available, proposing simulation models for each of them, leads to an incomplete energy representation. The aim of this study is to achieve a consistent and complete simulation method, comparing the different systems’ performances. The research is made up of five main steps. Firstly, a classification to group these systems into specific categories was proposed; secondly an in-depth analysis of existing literature was worked out to establish the methods used for different types of VGS. The study of plant physiology allowed the definition of an energy balance, which is valid for all vegetated surfaces; then, each category was associated to a mathematical formula and finally integrated into the EnergyPlus software. The results achieved for each model were compared evaluating two important parameters for the termohygrometric conditions control: outside walls face temperatures and operative temperatures.
File in questo prodotto:
File Dimensione Formato  
applsci-11-04802.pdf.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact