Due to recent technical progress, battery energy storages are becoming a viable option in the power sector. Their optimal operational management focuses on load shift and shaving of price spikes. However, this requires optimally responding to electricity demand, intermittent generation, and volatile electricity prices. More importantly, such optimization must take into account the so-called deep discharge costs, which have a significant impact on battery lifespan. We present a solution to a class of stochastic optimal control problems associated with these applications. Our numerical techniques are based on efficient algorithms which deliver a guaranteed accuracy.

A Computational Approach to Sequential Decision Optimization in Energy Storage and Trading

Falbo, Paolo;Pelizzari, Cristian
2021-01-01

Abstract

Due to recent technical progress, battery energy storages are becoming a viable option in the power sector. Their optimal operational management focuses on load shift and shaving of price spikes. However, this requires optimally responding to electricity demand, intermittent generation, and volatile electricity prices. More importantly, such optimization must take into account the so-called deep discharge costs, which have a significant impact on battery lifespan. We present a solution to a class of stochastic optimal control problems associated with these applications. Our numerical techniques are based on efficient algorithms which deliver a guaranteed accuracy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact