The transport of H2, He, CO2, O2, CH4, and N2 at three temperatures up to 65 ◦C was measured in dense, thick composite films formed by amorphous Polysulfone (PSf) and particles of the size-selective zeolitic imidazolate framework 8 (ZIF-8) at loadings up to 16 wt%. The morphological and structural properties of the membranes were analyzed via SEM and density measurement. The addition of ZIF-8 to PSf enhances the H2 and He permeabilities up to 480% with respect to the pure polymer, while the ideal H2/CO2 and He/CO2 selectivities of MMMs reach values up to 30–40% higher than those of pure PSf. The relative permeability and diffusivity enhancements are higher than those obtained in other polymers, such as PPO, with the same amount of filler. The Maxwell–Wagner–Sillars model is able to represent the MMM H2/CO2 separation performance for filler volume fractions below 10%.

An Analysis of the Effect of ZIF-8 Addition on the Separation Properties of Polysulfone at Various Temperatures

Ferroni, Matteo;
2021-01-01

Abstract

The transport of H2, He, CO2, O2, CH4, and N2 at three temperatures up to 65 ◦C was measured in dense, thick composite films formed by amorphous Polysulfone (PSf) and particles of the size-selective zeolitic imidazolate framework 8 (ZIF-8) at loadings up to 16 wt%. The morphological and structural properties of the membranes were analyzed via SEM and density measurement. The addition of ZIF-8 to PSf enhances the H2 and He permeabilities up to 480% with respect to the pure polymer, while the ideal H2/CO2 and He/CO2 selectivities of MMMs reach values up to 30–40% higher than those of pure PSf. The relative permeability and diffusivity enhancements are higher than those obtained in other polymers, such as PPO, with the same amount of filler. The Maxwell–Wagner–Sillars model is able to represent the MMM H2/CO2 separation performance for filler volume fractions below 10%.
File in questo prodotto:
File Dimensione Formato  
membranes-11-00427-v2.pdf

accesso aperto

Descrizione: Articolo full text
Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/545156
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact