The purpose of this report is to evaluate the applicability of a novel Print and Try technique in the presence of aberrant endodontic anatomies and to achieve a predictable treatment with improved outcome. According to guidelines, cone beam computed tomography (CBCT) is recommended in the presence of complex anatomies. The volumes were utilized to produce a stereo lithographic (STL) file, from which a 3D-plastic tooth model including a hollow root canal system was obtained. The 3D-patient-specific model facilitates the treatment planning and the trial of therapeutic approaches. Using a transparent material, all the treatment steps could be directly visualized. Subsequently, endodontic therapy could be performed in vivo with reduced operating time and with a better overview. Clinicians benefit from the Print and Try technique when facing a complicated root canal system with reduced stress and higher chances of success. In aberrant endodontic anatomies, the use of a transparent 3D plastic model, derived from the CBCT dicom, provides an exact preview of clinical challenges that will be met intra-operatively. A patient centered tailored approach to shaping, cleaning, and filling strategies can be applied.
Print and try technique: 3D-printing of teeth with complex anatomy a novel endodontic approach
Tonini R.;Boschi G.
;
2021-01-01
Abstract
The purpose of this report is to evaluate the applicability of a novel Print and Try technique in the presence of aberrant endodontic anatomies and to achieve a predictable treatment with improved outcome. According to guidelines, cone beam computed tomography (CBCT) is recommended in the presence of complex anatomies. The volumes were utilized to produce a stereo lithographic (STL) file, from which a 3D-plastic tooth model including a hollow root canal system was obtained. The 3D-patient-specific model facilitates the treatment planning and the trial of therapeutic approaches. Using a transparent material, all the treatment steps could be directly visualized. Subsequently, endodontic therapy could be performed in vivo with reduced operating time and with a better overview. Clinicians benefit from the Print and Try technique when facing a complicated root canal system with reduced stress and higher chances of success. In aberrant endodontic anatomies, the use of a transparent 3D plastic model, derived from the CBCT dicom, provides an exact preview of clinical challenges that will be met intra-operatively. A patient centered tailored approach to shaping, cleaning, and filling strategies can be applied.File | Dimensione | Formato | |
---|---|---|---|
applsci-11-01511-v2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
3.58 MB
Formato
Adobe PDF
|
3.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.