The high-speed water jet is used for different manufacturing processes such as cutting, shot peening, cleaning, machining, and spot welding. As water jet spot welding is a concise time welding process, numerical analysis can optimize it and examine the effect of input parameters on plastic deformation and stress distribution that would be difficult to measure experimentally. In this study, the entire water jet spot welding process of aluminum HS30 is modeled through ABAQUS/EXPLICIT based on an arbitrary Lagrangian-Eulerian (ALE) formulation which helps to alleviate many of the traditional Lagrangian-based implementation drawbacks. Three-dimensional (3D) models are used to evaluate the effect of water jet velocity, flyer stand-off distance (SD), and flyer thicknesses during the process. The weld’s quality in terms of failure or success is also investigated by using stress and strain measures. Numerical analysis of influence factors can be a promising avenue to avoid high-cost post-production inspection, which is intended for mass production.

Numerical analysis of high-speed water jet spot welding using the arbitrary Lagrangian-Eulerian (ALE) method

Salvadori A.
2021-01-01

Abstract

The high-speed water jet is used for different manufacturing processes such as cutting, shot peening, cleaning, machining, and spot welding. As water jet spot welding is a concise time welding process, numerical analysis can optimize it and examine the effect of input parameters on plastic deformation and stress distribution that would be difficult to measure experimentally. In this study, the entire water jet spot welding process of aluminum HS30 is modeled through ABAQUS/EXPLICIT based on an arbitrary Lagrangian-Eulerian (ALE) formulation which helps to alleviate many of the traditional Lagrangian-based implementation drawbacks. Three-dimensional (3D) models are used to evaluate the effect of water jet velocity, flyer stand-off distance (SD), and flyer thicknesses during the process. The weld’s quality in terms of failure or success is also investigated by using stress and strain measures. Numerical analysis of influence factors can be a promising avenue to avoid high-cost post-production inspection, which is intended for mass production.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/542368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact