Neutron inspection of sea-going cargo containers has been widely studied in the past 20 yr to nonintrusively detect terrorist threats, like explosives or Special Nuclear Materials (SNM), and illicit goods, like narcotics or smuggling materials. Fast 14 MeV neutrons are produced by a portable generator with the t(d, n)a fusion reaction, and tagged in both direction and time thanks to the alpha particle detection. This Associated Particle Technique (APT) allows focusing inspection on specific areas of interest in the containers, previously identified as containing suspicious items with X-ray radiographic scanners or radiation portal monitors. We describe the principle of APT for non-nuclear material identification, and for nuclear material detection, then we provide illustrations of the performances for 10 min inspections with significant quantities (kilograms) of explosives, illicit drugs, or SNM, in different cargo cover loads (e.g. metallic, organic, or ceramic matrices).

Sea container inspection with tagged neutrons

Donzella, Antonietta;Zenoni, Aldo;
2021-01-01

Abstract

Neutron inspection of sea-going cargo containers has been widely studied in the past 20 yr to nonintrusively detect terrorist threats, like explosives or Special Nuclear Materials (SNM), and illicit goods, like narcotics or smuggling materials. Fast 14 MeV neutrons are produced by a portable generator with the t(d, n)a fusion reaction, and tagged in both direction and time thanks to the alpha particle detection. This Associated Particle Technique (APT) allows focusing inspection on specific areas of interest in the containers, previously identified as containing suspicious items with X-ray radiographic scanners or radiation portal monitors. We describe the principle of APT for non-nuclear material identification, and for nuclear material detection, then we provide illustrations of the performances for 10 min inspections with significant quantities (kilograms) of explosives, illicit drugs, or SNM, in different cargo cover loads (e.g. metallic, organic, or ceramic matrices).
File in questo prodotto:
File Dimensione Formato  
epjn200024(small size).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/541675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact