The livestock sector is one of the most important sectors of the agricultural economy due to an increase in the demand for animal protein. This increase generates serious waste disposal concerns and has negative environmental consequences. Furthermore, the food production chain needs phosphorus (P), which is listed as a critical raw material due to its high demand and limited availability in Europe. Manure contains large amounts of P and other elements that may be recycled, in the frame of circular economy and “zero waste” principles, and reused as a by-product for fertilizer production and other applications. This paper focuses on the extraction and recovery of amorphous silica from rice husk poultry litter ash. Two different extraction procedures are proposed and compared, and the obtained silica is characterized. This work shows that amorphous silica can be recovered as an almost pure material rendering the residual ash free of P. It also addresses the possibility of more specific phosphorous extraction proceduresviaacid leaching.

Simultaneous amorphous silica and phosphorus recovery from rice husk poultry litter ash

Fiameni L.;Assi A.;Fahimi A.;Borgese L.;Bontempi E.
2021-01-01

Abstract

The livestock sector is one of the most important sectors of the agricultural economy due to an increase in the demand for animal protein. This increase generates serious waste disposal concerns and has negative environmental consequences. Furthermore, the food production chain needs phosphorus (P), which is listed as a critical raw material due to its high demand and limited availability in Europe. Manure contains large amounts of P and other elements that may be recycled, in the frame of circular economy and “zero waste” principles, and reused as a by-product for fertilizer production and other applications. This paper focuses on the extraction and recovery of amorphous silica from rice husk poultry litter ash. Two different extraction procedures are proposed and compared, and the obtained silica is characterized. This work shows that amorphous silica can be recovered as an almost pure material rendering the residual ash free of P. It also addresses the possibility of more specific phosphorous extraction proceduresviaacid leaching.
File in questo prodotto:
File Dimensione Formato  
RSC Advances_2021_Fiameni.pdf

accesso aperto

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/541435
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact