Claudin-low cancer (CL) represents a rare and biologically aggressive variant of epithelial tumor. Here, we identified a claudin-low molecular profile of ovarian high-grade serous carcinoma (HGSOC), which exhibits the main characteristics of the homonym breast cancer subtype, including low epithelial differentiation and high mesenchymal signature. Hierarchical clustering and a centroid based algorithm applied to cell line collection expression dataset labeled 6 HGSOC cell lines as CL. These have a high energy metabolism and are enriched in CD44+/CD24− mesenchymal stem-like cells expressing low levels of cell-cell adhesion molecules (claudins and E-Cadherin) and high levels of epithelial-to-mesenchymal transition (EMT) induction transcription factors (Zeb1, Snai2, Twist1 and Twist2). Accordingly, the centroid base algorithm applied to large retrospective collections of primary HGSOC samples reveals a tumor subgroup with transcriptional features consistent with the CL profile, and reaffirms EMT as the dominant biological pathway functioning in CL-HGSOC. HGSOC patients carrying CL profiles have a worse overall survival when compared to others, likely to be attributed to its undifferentiated/stem component. These observations highlight the lack of a molecular diagnostic in the management of HGSOC and suggest a potential prognostic utility of this molecular subtyping.

The claudin-low subtype of high-grade serous ovarian carcinoma exhibits stem cell features

Romani C.
;
Capoferri D.;Grillo E.;Silvestri M.;Corsini M.;Zanotti L.;Todeschini P.;Ravaggi A.;Odicino F.;Sartori E.;Calza S.
;
Mitola S.
2021-01-01

Abstract

Claudin-low cancer (CL) represents a rare and biologically aggressive variant of epithelial tumor. Here, we identified a claudin-low molecular profile of ovarian high-grade serous carcinoma (HGSOC), which exhibits the main characteristics of the homonym breast cancer subtype, including low epithelial differentiation and high mesenchymal signature. Hierarchical clustering and a centroid based algorithm applied to cell line collection expression dataset labeled 6 HGSOC cell lines as CL. These have a high energy metabolism and are enriched in CD44+/CD24− mesenchymal stem-like cells expressing low levels of cell-cell adhesion molecules (claudins and E-Cadherin) and high levels of epithelial-to-mesenchymal transition (EMT) induction transcription factors (Zeb1, Snai2, Twist1 and Twist2). Accordingly, the centroid base algorithm applied to large retrospective collections of primary HGSOC samples reveals a tumor subgroup with transcriptional features consistent with the CL profile, and reaffirms EMT as the dominant biological pathway functioning in CL-HGSOC. HGSOC patients carrying CL profiles have a worse overall survival when compared to others, likely to be attributed to its undifferentiated/stem component. These observations highlight the lack of a molecular diagnostic in the management of HGSOC and suggest a potential prognostic utility of this molecular subtyping.
File in questo prodotto:
File Dimensione Formato  
cancers-13-00906-v2.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/541321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact