Background & aims: Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Results: GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARy and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. Conclusions: GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. Methods: We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC).

GDF11 induces mild hepatic fibrosis independent of metabolic health

Rezzani R.;Bonomini F.;
2020-01-01

Abstract

Background & aims: Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Results: GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARy and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. Conclusions: GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. Methods: We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC).
File in questo prodotto:
File Dimensione Formato  
Frohlich et al 2020.pdf

gestori archivio

Descrizione: Frohlich et al 2020
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact