The dynamical behaviour of the Bronze Age war chariots was studied, considering the different assembly solutions that were found in evidences and pictures. In particular, the chariots with the axle in rear position, typical of Near-East and Egypt, were compared with the European ones, which generally had the axle in central position under the chariot cockpit. Furthermore, the role of the floor, usually realized in woven leather or other organic fibres, was investigated. Dynamical finite element and multibody simulation software was used for studying the behaviour of the chariots in occasional overloading events, such as bumps or curves. An experimental device was set up for studying the difference of the response of a woven floor with respect to a wooden one. Finally, a finite element frequency response analysis was carried out to investigate the behaviour in full run over a rough ground. The results showed that position of the axle did not significantly influence the response of the chariot to occasional overloads. On the contrary, it had a strong influence on the stability of the passengers: rear axle chariots were much more effective in cutting the vibrations transmitted to the passengers when running at high speed. This effect was amplified by an increased floor flexibility, which was achieved with a woven floor. These findings could explain the diffusion of the rear-axle chariots in the Near-East and Egypt, where the chariotry was the most important part of the armies: indeed, the effectiveness in cutting the vibrations at high speed should be a crucial factor for ensuring the required precision to the transported archers. On the contrary, the likely marginal role of the chariots in the European armies could lead to the diffusion of central axle model, which ensured a lower burden on the draught horses.

Dynamical behaviour of Bronze Age war chariots

Mazzù, Angelo
;
Uberti, Stefano;Bodini, Ileana;Paderno, Diego;Danesi, Andrea
2021-01-01

Abstract

The dynamical behaviour of the Bronze Age war chariots was studied, considering the different assembly solutions that were found in evidences and pictures. In particular, the chariots with the axle in rear position, typical of Near-East and Egypt, were compared with the European ones, which generally had the axle in central position under the chariot cockpit. Furthermore, the role of the floor, usually realized in woven leather or other organic fibres, was investigated. Dynamical finite element and multibody simulation software was used for studying the behaviour of the chariots in occasional overloading events, such as bumps or curves. An experimental device was set up for studying the difference of the response of a woven floor with respect to a wooden one. Finally, a finite element frequency response analysis was carried out to investigate the behaviour in full run over a rough ground. The results showed that position of the axle did not significantly influence the response of the chariot to occasional overloads. On the contrary, it had a strong influence on the stability of the passengers: rear axle chariots were much more effective in cutting the vibrations transmitted to the passengers when running at high speed. This effect was amplified by an increased floor flexibility, which was achieved with a woven floor. These findings could explain the diffusion of the rear-axle chariots in the Near-East and Egypt, where the chariotry was the most important part of the armies: indeed, the effectiveness in cutting the vibrations at high speed should be a crucial factor for ensuring the required precision to the transported archers. On the contrary, the likely marginal role of the chariots in the European armies could lead to the diffusion of central axle model, which ensured a lower burden on the draught horses.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540575
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact