Trunk (H(T)), limb (H(L)), and whole-body (H(DIR) = H(T) + H(L) + H(forehead)) skin-to-water heat flows were measured by heat flow transducers on nine men immersed head out in water at critical temperature (T(cw) = 30 ± 2°C) and below [overall water temperature (T(w)) range = 22-32°C] after up to 3 h at rest and exercise. Body heat flow was also determined indirectly (H(M)) from metabolic rate corrected for changes in heat stores. At rest at T(cw) [O2 uptake (V̇O2) = 0.33 ± 0.07 l/min, n = 7], H(T) = 52.3 ± 14.2 (SD) W, H(L) = 56.4 ± 14.6 W, H(DIR) = 120 ± 27 W, and H(M) = 111 ± 29 W (significantly different from H(DIR)). T(w) markedly affected H(DIR) but only slightly affected H(M) (n = 22 experiments at T(w) different from T(cw) plus 7 experiments at T(cw)). During light exercise (3 MET) at T(cw) (V̇O2 = 1.06 ± 0.26 l/min, n = 9), H(T) = 122 ± 43 W, H(L) = 130 ± 27 W, H(DIR) = 285 ± 69 W, and H(M) = 260 ± 60 W. During severe exercise (7 MET) at T(cw) (V̇O2 = 2.27 ± 0.50 l/min, n = 4), H(T) = 226 ± 100 W, H(L) = 262 ± 61 W, H(DIR) = 517 ± 148 W, and H(M) = 496 ± 98 W. Lowering T(w) at 7-MET exercise (n = 9, plus 4 at T(cw)) had no effect on H(DIR) and H(M). In conclusion, resting H(L) and H(T) are equal. At T(w) < T(cw) at rest, H(DIR) > H(M), showing that unexpectedly the shell was still cooling. During exercise, H(L) increases more than H(T) but less than expected from the heat production of the working limbs. Therefore some heat produced by the limbs is probably transported by blood to the trunk. During heavy exercise, H(DIR) is constant at all considered T(w); apparently it is regulated by some thermally dependent mechanism, such as a progressive cutaneous vasodilation occurring as T(w) increases.

Regional heat flows of resting and exercising men immersed in cool water

Ferretti G.;
1988-01-01

Abstract

Trunk (H(T)), limb (H(L)), and whole-body (H(DIR) = H(T) + H(L) + H(forehead)) skin-to-water heat flows were measured by heat flow transducers on nine men immersed head out in water at critical temperature (T(cw) = 30 ± 2°C) and below [overall water temperature (T(w)) range = 22-32°C] after up to 3 h at rest and exercise. Body heat flow was also determined indirectly (H(M)) from metabolic rate corrected for changes in heat stores. At rest at T(cw) [O2 uptake (V̇O2) = 0.33 ± 0.07 l/min, n = 7], H(T) = 52.3 ± 14.2 (SD) W, H(L) = 56.4 ± 14.6 W, H(DIR) = 120 ± 27 W, and H(M) = 111 ± 29 W (significantly different from H(DIR)). T(w) markedly affected H(DIR) but only slightly affected H(M) (n = 22 experiments at T(w) different from T(cw) plus 7 experiments at T(cw)). During light exercise (3 MET) at T(cw) (V̇O2 = 1.06 ± 0.26 l/min, n = 9), H(T) = 122 ± 43 W, H(L) = 130 ± 27 W, H(DIR) = 285 ± 69 W, and H(M) = 260 ± 60 W. During severe exercise (7 MET) at T(cw) (V̇O2 = 2.27 ± 0.50 l/min, n = 4), H(T) = 226 ± 100 W, H(L) = 262 ± 61 W, H(DIR) = 517 ± 148 W, and H(M) = 496 ± 98 W. Lowering T(w) at 7-MET exercise (n = 9, plus 4 at T(cw)) had no effect on H(DIR) and H(M). In conclusion, resting H(L) and H(T) are equal. At T(w) < T(cw) at rest, H(DIR) > H(M), showing that unexpectedly the shell was still cooling. During exercise, H(L) increases more than H(T) but less than expected from the heat production of the working limbs. Therefore some heat produced by the limbs is probably transported by blood to the trunk. During heavy exercise, H(DIR) is constant at all considered T(w); apparently it is regulated by some thermally dependent mechanism, such as a progressive cutaneous vasodilation occurring as T(w) increases.
File in questo prodotto:
File Dimensione Formato  
005 Ferretti JAP 1988.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540553
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact