The maximal muscular power (both instantaneous, and average, and the cross-sectional area of the left thigh (CSA) were measured on six subjects before (B) and after (A) prolonged exposure to high altitude (above 5000 m asl). Instantaneous maximal muscular power and average maximal muscular power were determined during a standing high jump off both feet on a force platform, and CSA by computed tomography. It was observed that: (1) in B, body weight (BW) = 74.1 ± 5.8 kg, instantaneous maximal muscular power = 3330 ± 460 W (44.8 ± 3.4 W·kg-1). Average maximal muscular power = 1795 ± 395 W (24.6 ± 4.3 W·kg-1), and CSA = 184.5 ± 23.1 cm2; 2) in A, BW = 70.4 + 6.6 kg, instantaneous maximal muscular power = 3005 ± 472 W (42.5 ± 3.6 W·kg-1), (w) = 1531 ± 267 W (21.9 ± 3.1 W·kg-1), and CSA = 163.5 ± 23.1 cm2. Thus, instantaneous maximal muscular power and average maximal muscular power were decreased both in absolute terms (-9.8% and -14.7%, respectively) and per unit BW (-5.1% and -11.0%). However, because of the concomitant decrease in CSA, when expressed per unit cross-sectional area of the muscle, instantaneous maximal muscular power (9.04 ± 0.71 and 9.20 ± 0.72 W ± cm2) and average maximal muscular power (4.87 ± 0.81 and 4.70 ± 0.67 W/cm2) were unchanged. The intrinsic capacity of the muscle to generate explosive power is therefore preserved in A. It is concluded that the decrease in instantaneous maximal muscular power and average maximal muscular power after high-altitude exposure depends only on a net loss of muscle mass.

VII. Maximal muscular power before and after exposure to chronic hypoxia

Ferretti G.;
1990-01-01

Abstract

The maximal muscular power (both instantaneous, and average, and the cross-sectional area of the left thigh (CSA) were measured on six subjects before (B) and after (A) prolonged exposure to high altitude (above 5000 m asl). Instantaneous maximal muscular power and average maximal muscular power were determined during a standing high jump off both feet on a force platform, and CSA by computed tomography. It was observed that: (1) in B, body weight (BW) = 74.1 ± 5.8 kg, instantaneous maximal muscular power = 3330 ± 460 W (44.8 ± 3.4 W·kg-1). Average maximal muscular power = 1795 ± 395 W (24.6 ± 4.3 W·kg-1), and CSA = 184.5 ± 23.1 cm2; 2) in A, BW = 70.4 + 6.6 kg, instantaneous maximal muscular power = 3005 ± 472 W (42.5 ± 3.6 W·kg-1), (w) = 1531 ± 267 W (21.9 ± 3.1 W·kg-1), and CSA = 163.5 ± 23.1 cm2. Thus, instantaneous maximal muscular power and average maximal muscular power were decreased both in absolute terms (-9.8% and -14.7%, respectively) and per unit BW (-5.1% and -11.0%). However, because of the concomitant decrease in CSA, when expressed per unit cross-sectional area of the muscle, instantaneous maximal muscular power (9.04 ± 0.71 and 9.20 ± 0.72 W ± cm2) and average maximal muscular power (4.87 ± 0.81 and 4.70 ± 0.67 W/cm2) were unchanged. The intrinsic capacity of the muscle to generate explosive power is therefore preserved in A. It is concluded that the decrease in instantaneous maximal muscular power and average maximal muscular power after high-altitude exposure depends only on a net loss of muscle mass.
File in questo prodotto:
File Dimensione Formato  
008 Ferretti IJSM 1990.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 71.93 kB
Formato Adobe PDF
71.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540535
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 46
social impact