Twenty healthy high-altitude natives, residents of La Paz, Bolivia (3,600 m), participated in 6 wk of endurance exercise training on bicycle ergometers, 5 times/wk, 30 min/session, as previously described in normoxia- trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl. Physiol. 59: 320- 327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.209); a second group of 10 subjects was trained in acute normoxia (NT; barometric pressure 500 mmHg; inspired O2 fraction = 0.314). The workloads were adjusted to ~70% of peak O2 consumption (V̇O2(peak)) measured either in hypoxia for the HT group or in normoxia for the NT group. (V̇O(2peak)) determination and biopsies of the vastus lateralis muscle were taken before and after the training program. (V̇O(2peak)) in the HT group was increased (14%) in a way similar to that in NT sea-level natives with the same protocol. Moreover, (V̇O(2peak)) in the NT group was not further increased by additional O2 delivery during the training session. HT or NT induced similar increases in muscle capillary-to-fiber ratio (26%) and capillary density (19%) as well as in the volume density of total mitochondria and citrate synthase activity (45%). It is concluded that high-altitude natives have a reduced capillarity and muscle tissue oxidative capacity; however, their training response is similar to that of sea-level residents, independent of whether training is carried out in hypobaric hypoxia or hypobaric normoxia.

Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia

Ferretti G.;
1996-01-01

Abstract

Twenty healthy high-altitude natives, residents of La Paz, Bolivia (3,600 m), participated in 6 wk of endurance exercise training on bicycle ergometers, 5 times/wk, 30 min/session, as previously described in normoxia- trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl. Physiol. 59: 320- 327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.209); a second group of 10 subjects was trained in acute normoxia (NT; barometric pressure 500 mmHg; inspired O2 fraction = 0.314). The workloads were adjusted to ~70% of peak O2 consumption (V̇O2(peak)) measured either in hypoxia for the HT group or in normoxia for the NT group. (V̇O(2peak)) determination and biopsies of the vastus lateralis muscle were taken before and after the training program. (V̇O(2peak)) in the HT group was increased (14%) in a way similar to that in NT sea-level natives with the same protocol. Moreover, (V̇O(2peak)) in the NT group was not further increased by additional O2 delivery during the training session. HT or NT induced similar increases in muscle capillary-to-fiber ratio (26%) and capillary density (19%) as well as in the volume density of total mitochondria and citrate synthase activity (45%). It is concluded that high-altitude natives have a reduced capillarity and muscle tissue oxidative capacity; however, their training response is similar to that of sea-level residents, independent of whether training is carried out in hypobaric hypoxia or hypobaric normoxia.
File in questo prodotto:
File Dimensione Formato  
Desplanches-JAP 1996.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 78.59 kB
Formato Adobe PDF
78.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 71
  • ???jsp.display-item.citation.isi??? ND
social impact