For a bounded open set $\Omega\subset\R^3$ we consider the minimization problem $$ S(a+\epsilon V) = \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int_\Omega u^6\,dx)^{1/3}} $$ involving the critical Sobolev exponent. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on $a$ and $V$ we compute the asymptotics of $S(a+\epsilon V)-S$ as $\epsilon\to 0+$, where $S$ is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to $a$ and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $S(a+\epsilon V)0$.
Energy asymptotics in the three-dimensional Brezis–Nirenberg problem
Kovařík, HynekMembro del Collaboration Group
2021-01-01
Abstract
For a bounded open set $\Omega\subset\R^3$ we consider the minimization problem $$ S(a+\epsilon V) = \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega (|\nabla u|^2+ (a+\epsilon V) |u|^2)\,dx}{(\int_\Omega u^6\,dx)^{1/3}} $$ involving the critical Sobolev exponent. The function $a$ is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on $a$ and $V$ we compute the asymptotics of $S(a+\epsilon V)-S$ as $\epsilon\to 0+$, where $S$ is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to $a$ and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have $S(a+\epsilon V)0$.File | Dimensione | Formato | |
---|---|---|---|
FKK-2.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
645.73 kB
Formato
Adobe PDF
|
645.73 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.