In recent years, miniaturization of components has been concerned with several industrial fields including aerospace, energy, and electronics. This phenomenon resulted in increasing demand of micro-components with complex shape and high strength, often in high-temperature environment. Nickel-based superalloys such as Inconel 625 are a class of material suitable to aforementioned applications and can be successfully processed with Additive Manufacturing (AM). Moreover, micro-milling can be employed to manufacture micro-scale features on the additively fabricated parts or to achieve better surface finishes, as required for high-precision mechanical assemblies. In micro machining, it is possible to notice a lack of scientific study focusses on the material removal behavior of difficulty-to-cut alloys produced via Additive Manufacturing. This paper describes an analytical cutting force model suitable also for AM’d parts which considers the presence of ploughing- and shearing- dominated cutting regimes. A refinement procedure of the cutting force model was defined and applied by performing an experimental work on Inconel 625 samples fabricated by LaserCUSING™. A search algorithm was employed to develop an iterative methodology to determine the unknown cutting force model parameters. The model was successfully utilized to predict how the cutting force is affected as the process parameters change.

Analytical force modelling for micro milling additively fabricated Inconel 625

Abeni A.;Loda D.;Attanasio A.
2020-01-01

Abstract

In recent years, miniaturization of components has been concerned with several industrial fields including aerospace, energy, and electronics. This phenomenon resulted in increasing demand of micro-components with complex shape and high strength, often in high-temperature environment. Nickel-based superalloys such as Inconel 625 are a class of material suitable to aforementioned applications and can be successfully processed with Additive Manufacturing (AM). Moreover, micro-milling can be employed to manufacture micro-scale features on the additively fabricated parts or to achieve better surface finishes, as required for high-precision mechanical assemblies. In micro machining, it is possible to notice a lack of scientific study focusses on the material removal behavior of difficulty-to-cut alloys produced via Additive Manufacturing. This paper describes an analytical cutting force model suitable also for AM’d parts which considers the presence of ploughing- and shearing- dominated cutting regimes. A refinement procedure of the cutting force model was defined and applied by performing an experimental work on Inconel 625 samples fabricated by LaserCUSING™. A search algorithm was employed to develop an iterative methodology to determine the unknown cutting force model parameters. The model was successfully utilized to predict how the cutting force is affected as the process parameters change.
File in questo prodotto:
File Dimensione Formato  
Abeni_et_al-2020-Production_Engineering.pdf

Open Access dal 12/02/2024

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/539411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 6
social impact