The 3D printing process offers several advantages to the medical industry by producing complex and bespoke devices that accurately reproduce customized patient geometries. Despite the recent developments that strongly enhanced the dominance of additive manufacturing (AM) techniques over conventional methods, processes need to be continually optimized and controlled to obtain implants that can fulfill all the requirements of the surgical procedure and the anatomical district of interest. The best outcomes of an implant derive from optimal compromise and balance between a good interaction with the surrounding tissue through cell attachment and reduced inflammatory response mainly caused by a weak interface with the native tissue or bacteria colonization of the implant surface. For these reasons, the chemical, morphological, and mechanical properties of a device need to be designed in order to assure the best performances considering the in vivo environment components. In particular, complex 3D geometries can be produced with high dimensional accuracy but inadequate surface properties due to the layer manufacturing process that always entails the use of post-processing techniques to improve the surface quality, increasing the lead times of the whole process despite the reduction of the supply chain. The goal of this work was to provide a comparison between Ti6Al4V samples fabricated by selective laser melting (SLM) and electron beam melting (EBM) with different building directions in relation to the building plate. The results highlighted the influence of the process technique on osteoblast attachment and mineralization compared with the building orientation that showed a limited effect in promoting a proper osseointegration over a long-term period.

Selective laser melting and electron beam melting of Ti6Al4V for orthopedic applications: A comparative study on the applied building direction

Ginestra P.
;
Ferraro R. M.;Abeni A.;Giliani S.;Ceretti E.
2020-01-01

Abstract

The 3D printing process offers several advantages to the medical industry by producing complex and bespoke devices that accurately reproduce customized patient geometries. Despite the recent developments that strongly enhanced the dominance of additive manufacturing (AM) techniques over conventional methods, processes need to be continually optimized and controlled to obtain implants that can fulfill all the requirements of the surgical procedure and the anatomical district of interest. The best outcomes of an implant derive from optimal compromise and balance between a good interaction with the surrounding tissue through cell attachment and reduced inflammatory response mainly caused by a weak interface with the native tissue or bacteria colonization of the implant surface. For these reasons, the chemical, morphological, and mechanical properties of a device need to be designed in order to assure the best performances considering the in vivo environment components. In particular, complex 3D geometries can be produced with high dimensional accuracy but inadequate surface properties due to the layer manufacturing process that always entails the use of post-processing techniques to improve the surface quality, increasing the lead times of the whole process despite the reduction of the supply chain. The goal of this work was to provide a comparison between Ti6Al4V samples fabricated by selective laser melting (SLM) and electron beam melting (EBM) with different building directions in relation to the building plate. The results highlighted the influence of the process technique on osteoblast attachment and mineralization compared with the building orientation that showed a limited effect in promoting a proper osseointegration over a long-term period.
File in questo prodotto:
File Dimensione Formato  
Selective-laser-melting-and-electron-beam-melting-of-Ti6Al4V-for-orthopedic-applications-A-comparative-study-on-the-applied-building-direction2020MaterialsOpen-Access.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 7.99 MB
Formato Adobe PDF
7.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/538708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 35
social impact