Purpose: Our purpose was to assess the clinical outcomes and target positioning accuracy of frameless linear accelerator single-isocenter multiple-target (SIMT) dynamic conformal arc (DCA) stereotactic radiosurgery (SRS) for multiple brain metastases (BM). Methods and Materials: Between October 2016 and September 2018, 31 consecutive patients ≥18 years old with 204 BM <3 cm in maximum size receiving SIMT DCA SRS were retrospectively evaluated. All plans were created using a dedicated automated treatment planning software (Brainlab, Munich, Germany), and treatments were performed with a Truebeam STx or a Novalis Tx (Brainlab and Varian Medical Systems, CA). The accuracy of setup and interfraction patient repositioning was assessed by Brainlab ExacTrac radiograph 6-dimensional image system and the risk of compromised target dose coverage evaluated. Brain control and overall survival were estimated by Kaplan-Meier method calculated from the time of SRS. Results: Fourteen patients were treated for 4 to 6 and 17 patients for 7 to 10 BM. The mean gross tumor volume (GTV) was 0.65 cm3 and the mean planning target volume (PTV) was 0.89 cm3. Mean V95 (the volume of the PTV covered by 95% of the prescription dose) and D95 (the prescription dose covering 95% of the PTV) were 99.5% and 21.1 Gy, respectively. With a median clinical follow-up of 11 months (range, 4-26 months), the 1-year survival was 68% and local control was 89%. As a consequence of plan isocenter residual errors, a loss of target coverage, defined as V95 < 95%, occurred in 28 PTVs (10 patients); using a 1 mm GTV-to-PTV margin, adequate dose coverage was maintained for all lesions. Conclusions: SIMT DCA SRS represents a fast and effective approach for patients with up to 10 BM. The dosimetric effects of residual set-up and intrafraction positioning errors are modest, although a GTV-to-PTV margin of 1 mm is recommended.

Initial Experience With Single-Isocenter Radiosurgery to Target Multiple Brain Metastases Using an Automated Treatment Planning Software: Clinical Outcomes and Optimal Target Volume Margins Strategy

Alongi F.;
2020-01-01

Abstract

Purpose: Our purpose was to assess the clinical outcomes and target positioning accuracy of frameless linear accelerator single-isocenter multiple-target (SIMT) dynamic conformal arc (DCA) stereotactic radiosurgery (SRS) for multiple brain metastases (BM). Methods and Materials: Between October 2016 and September 2018, 31 consecutive patients ≥18 years old with 204 BM <3 cm in maximum size receiving SIMT DCA SRS were retrospectively evaluated. All plans were created using a dedicated automated treatment planning software (Brainlab, Munich, Germany), and treatments were performed with a Truebeam STx or a Novalis Tx (Brainlab and Varian Medical Systems, CA). The accuracy of setup and interfraction patient repositioning was assessed by Brainlab ExacTrac radiograph 6-dimensional image system and the risk of compromised target dose coverage evaluated. Brain control and overall survival were estimated by Kaplan-Meier method calculated from the time of SRS. Results: Fourteen patients were treated for 4 to 6 and 17 patients for 7 to 10 BM. The mean gross tumor volume (GTV) was 0.65 cm3 and the mean planning target volume (PTV) was 0.89 cm3. Mean V95 (the volume of the PTV covered by 95% of the prescription dose) and D95 (the prescription dose covering 95% of the PTV) were 99.5% and 21.1 Gy, respectively. With a median clinical follow-up of 11 months (range, 4-26 months), the 1-year survival was 68% and local control was 89%. As a consequence of plan isocenter residual errors, a loss of target coverage, defined as V95 < 95%, occurred in 28 PTVs (10 patients); using a 1 mm GTV-to-PTV margin, adequate dose coverage was maintained for all lesions. Conclusions: SIMT DCA SRS represents a fast and effective approach for patients with up to 10 BM. The dosimetric effects of residual set-up and intrafraction positioning errors are modest, although a GTV-to-PTV margin of 1 mm is recommended.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/538472
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact