Whole-cell biosensors are natural or engineered microorganisms producing signals in response to specific stimuli. This review introduces the use of whole-cell biosensors for the study of the soil system, discuss the recent developments and some current limitations and draws future prospects of the whole-cell biosensors for application to the study of the agro-ecosystems. The review focuses mainly on the lux- and gfp-inserted whole-cell biosensors producing bioluminescence and multicoloured fluorescent proteins, which allow an easy and reproducible detection of the signals from a large number of prokaryotic and eukaryotic soil-borne microorganisms. This review also points out how the whole-cell biosensors indicate the bioavailability of selected analyte, an information that cannot be straight forwardly extrapolated using the chemical methods of soil analysis. However, regardless of the immense progress in biotechnology and genetics that allows to construct whole-cell biosensors for virtually detecting any chemical at ultra low concentrations, the soil still remains the most extreme natural system to be studied with these biotechnological analytical tools. Although a lack of standardization for most of the constructed whole-cell biosensors along with the scarce knowledge of their performance concur to prevent their use in the official methods of soil and environmental analysis, owing to their stability and selectivity we restate that the whole-cell biosensors are ready to provide information on the main processes occurring in soil, and represent unprecedented sensitive tools for improving agriculture and for soil monitoring.

Light dazzles from the black box: whole-cell biosensors are ready to inform on fundamental soil biological processes

GIAGNONI, LAURA
2016-01-01

Abstract

Whole-cell biosensors are natural or engineered microorganisms producing signals in response to specific stimuli. This review introduces the use of whole-cell biosensors for the study of the soil system, discuss the recent developments and some current limitations and draws future prospects of the whole-cell biosensors for application to the study of the agro-ecosystems. The review focuses mainly on the lux- and gfp-inserted whole-cell biosensors producing bioluminescence and multicoloured fluorescent proteins, which allow an easy and reproducible detection of the signals from a large number of prokaryotic and eukaryotic soil-borne microorganisms. This review also points out how the whole-cell biosensors indicate the bioavailability of selected analyte, an information that cannot be straight forwardly extrapolated using the chemical methods of soil analysis. However, regardless of the immense progress in biotechnology and genetics that allows to construct whole-cell biosensors for virtually detecting any chemical at ultra low concentrations, the soil still remains the most extreme natural system to be studied with these biotechnological analytical tools. Although a lack of standardization for most of the constructed whole-cell biosensors along with the scarce knowledge of their performance concur to prevent their use in the official methods of soil and environmental analysis, owing to their stability and selectivity we restate that the whole-cell biosensors are ready to provide information on the main processes occurring in soil, and represent unprecedented sensitive tools for improving agriculture and for soil monitoring.
File in questo prodotto:
File Dimensione Formato  
Light dazzles from the black box - whole celle biosensors are ready to inform on fundamental processess occurring in soil.pdf

solo utenti autorizzati

Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/538280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact