Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease man-agement. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation rec-ognized by the antibody 2D3A8, also named Unfolded p53 (U-p532D3A8+), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p532D3A8+ plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ+—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p532D3A8+ plasma level as a promising additional candidate blood-based biomarker for AD.
A conformation variant of p53 combined with machine learning identifies alzheimer disease in preclinical and prodromal stages
Abate G.
;Vezzoli M.;Guaita A.;Garrafa E.;Marengoni A.;Forloni G.;Memo M.;Uberti D.
2021-01-01
Abstract
Early diagnosis of Alzheimer’s disease (AD) is a crucial starting point in disease man-agement. Blood-based biomarkers could represent a considerable advantage in providing AD-risk information in primary care settings. Here, we report new data for a relatively unknown blood-based biomarker that holds promise for AD diagnosis. We evaluate a p53-misfolding conformation rec-ognized by the antibody 2D3A8, also named Unfolded p53 (U-p532D3A8+), in 375 plasma samples derived from InveCe.Ab and PharmaCog/E-ADNI longitudinal studies. A machine learning approach is used to combine U-p532D3A8+ plasma levels with Mini-Mental State Examination (MMSE) and apolipoprotein E epsilon-4 (APOEε4) and is able to predict AD likelihood risk in InveCe.Ab with an overall 86.67% agreement with clinical diagnosis. These algorithms also accurately classify (AUC = 0.92) Aβ+—amnestic Mild Cognitive Impairment (aMCI) patients who will develop AD in PharmaCog/E-ADNI, where subjects were stratified according to Cerebrospinal fluid (CSF) AD markers (Aβ42 and p-Tau). Results support U-p532D3A8+ plasma level as a promising additional candidate blood-based biomarker for AD.File | Dimensione | Formato | |
---|---|---|---|
jpm-11-00014-v3.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
Dominio pubblico
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.