Efficient second-order probabilistic inference in uncertain Bayesian networks was recently introduced. However, such second -order inference methods presume training over complete training data. While the expectation-maximization framework is well-established for learning Bayesian network parameters for incomplete training data, the framework does not determine the covariance of the parameters. This paper introduces two methods to compute the covariances for the parameters of Bayesian networks or Markov random fields due to incomplete data for two-node networks. The first method computes the covariances directly from the posterior distribution of parameters, and the second method more efficiently estimates the covariances from the Fisher information matrix. Finally, the implications and effectiveness of these covariances is theoretically and empirically evaluated.
Second-order learning and inference using incomplete data for uncertain bayesian networks: A two node example
Cerutti F.;
2020-01-01
Abstract
Efficient second-order probabilistic inference in uncertain Bayesian networks was recently introduced. However, such second -order inference methods presume training over complete training data. While the expectation-maximization framework is well-established for learning Bayesian network parameters for incomplete training data, the framework does not determine the covariance of the parameters. This paper introduces two methods to compute the covariances for the parameters of Bayesian networks or Markov random fields due to incomplete data for two-node networks. The first method computes the covariances directly from the posterior distribution of parameters, and the second method more efficiently estimates the covariances from the Fisher information matrix. Finally, the implications and effectiveness of these covariances is theoretically and empirically evaluated.File | Dimensione | Formato | |
---|---|---|---|
TwoNodeLearning_v01.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.