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Abstract—Efficient second-order probabilistic inference in un-
certain Bayesian networks was recently introduced. However,
such second-order inference methods presume training over
complete training data. While the expectation-maximization
framework is well-established for learning Bayesian network
parameters for incomplete training data, the framework does
not determine the covariance of the parameters. This paper
introduces two methods to compute the covariances for the
parameters of Bayesian networks or Markov random fields due
to incomplete data for two-node networks. The first method
computes the covariances directly from the posterior distribution
of parameters, and the second method more efficiently estimates
the covariances from the Fisher information matrix. Finally, the
implications and effectiveness of these covariances is theoretically
and empirically evaluated.

I. INTRODUCTION

Situational understanding is paramount for informing deci-
sion makers. For example, observations about the health and
social interactions of citizens in a region of interest can help
to determine the probability that the distribution of certain
aid will be effective in a disaster relief scenario. Probabilistic
graphical models (PGMs) help handling the complexity of
fusing such observations of interrelated random variables.
The structure in PGMs encodes the conditional dependencies
between the variables; we assume that such a structure is
known. For instance, in our scenario, it is reasonable to
believe that years of experience distributing aid throughout the
world lead to proven socio-demographic models. Nevertheless,
parameters within the models must be learned for each area
of interest as the local population can exhibit specific social
norms unique to that area. This means that machine learning
is required to estimate the parameters from training data, and
when such data are limited, the model parameters will not
be known precisely (epistemic uncertainty), and this can lead
to uncertainty on the probabilities inferred for variables of
interest for decision making (aleatoric uncertainty).

The PGMs are represented as either Markov random fields
(undirected graphs) parameterized by potentials composing the
joint probability mass or density or as Bayesian networks
parameterized by conditional probabilities. While model (epis-
temic) uncertainty may be incorporated in the structural and
parameter learning, the inference process typically presumes
precise conditional probabilities. A survey of Bayesian net-
work research with imprecise conditional probability tables is
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provided in [1]. Valuation-based systems and credal networks
have been investigated as a means to propagate impression of
the conditional probabilities into imprecision of the inferred
probabilities [2], [3]. From a Bayesian perspective, the likeli-
hood of the training data leads to a posterior distribution for
the parameters and recent methods have incorporated second-
order probabilities, i.e., distributions on probabilities, to enable
the propagation of these distributions into a distribution for the
inferred state probabilities [4], [5]. These second-order infer-
ence methods assume that the distributions for the different
conditional probabilities are statistically independent, which
holds if all variables are observed over all instantiations of
the network over a window of time.

It is impractical to assume that the training data is complete.
It is expected that in the historical data, certain variables
cannot be observed at certain times. While the expectation-
maximization (EM) framework has classically been used to
learn conditional probabilities for Bayesian networks with
incomplete training data [6], [7], [8], to the best of our knowl-
edge, there is no work to address the posterior distribution
of conditional probabilities learned from incomplete training
data. This paper provides a first glance by determining the
covariance of the conditional probabilities for second-order
inference over a binary two-node probabilistic network.

The rest of the paper is organized as follows. We provide
the desiderata for Bayesian networks in the next section. In
Section III, we determine the covariance matrix for the model
parameters first using the direct covariance calculation using
the posterior for the conditional probabilities (Section III-A)
and then a more computationally efficient estimation through
the inversion of the Fisher information matrix (FIM) (Sec-
tion III-B). We consider both Bayesian network (directed) and
Markov random field (undirected) interpretations of the joint
probability mass and demonstrate the limits of incomplete data
to reduce epistemic uncertainty in the inferred probabilities.
Finally, in Section IV, we demonstrate through numerical
experiments that both the posterior and Fisher analyses accu-
rately characterize the confidence in the inferred probabilities,
with the Fisher analysis being much less computationally
demanding than the posterior analysis. We conclude in Sec-
tion V.



II. PRELIMINARIES

We summarize the concept of PGMs and Bayesian networks
here.

A. Dirichlet Distribution

The probabilities 8 = (61,....0k-1.1 - XK' 6,) that a
particular variable X will take on one of K state values
in the alphabet X can be learned by observing a set of
independent realizations of X. Note that # € Sx meaning
that the K elements of @ are all non-negative and sum up
to one. Assuming a uniform (uninformative) prior for these
probabilities, it is well known that the posterior distribution
for these probabilities is Dirichlet distributed,
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over Sg where B(a) = % is the K-dimensional beta

function, I'(:) is the Gamma function, and @ = (n;+1,--- ,ng+
1) are the Dirichlet parameters representing the number of
times a sample takes on one of the K possible values, i.e., n;
fori=1,...,K. Note that,
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The Dirichlet strength S, = a; + -+ + @k represents the
total number of observations to determine the distribution.
It is inversely proportional to the epistemic uncertainty and
represents the precision of the distribution. When K = 2,
the Dirichlet distribution simplifies to the well known beta
distribution. When viewing each 6; in isolation, it is beta
distributed with @ = (@;, S+ — @;). The means and variances
for 6; are given by
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respectively.

B. Probabilistic Graphical Models

The PGMs encode the conditional statistical relations be-
tween variables to represent the joint probability mass function
(pmf) of all the variables. The graphical structure simplifies
the inference of latent variables in light of the evidence,
i.e., the values of the observed variables. When the graphs
are undirected, the pmfs can be represented as a product of
potentials for each clique. For an undirected two-node graph
X—7Y, the potential is simply the values of the pmf that is
completely parameterized by the parameters 8, = (6,,, Oz, O5.)
representing the joint probabilities that (X = x, Y = y),
(X =xY =y)and (X = x,Y = ¥), respectively. All other
probabilities, joint or marginal, are derived as a function
of these three parameters, e.g., pyx = hy(6,) such that
hyz(0,) = 1 — 6, — 0,5 — 65,. In general, h(6,) is the functions
that computes p. from the three parameters 6, of the undirected
model.

Bayesian networks are directed acyclic graphs with nodes
representing random variables whose joint probability dis-
tributions is the product of the probability of each variable
conditioned on the values of its parent variables. For two

TABLE I
VARIOUS h. FUNCTIONS TO COMPUTE PROBABILITIES p. FROM THE
MODEL PARAMETER 6, OF THE X — Y BAYESIAN NETWORK.

hyx(er) = 9)'|x9x hy(gr) = Gy\xex + Gy\)’c(l —-6y)
h)‘)?(or) = gyli(l —0y) hi(er) =(1- 9)1)()9)( + (1 - 9\\)?)(1 =0y
hy‘x(ar) =(1- a\'\.x)ax hy(0,) = 6y
hyx(60) = (1 = Oy)(1 —0x)  he(0,) =1- 9x9 ,
hy(6,) = Oy, hy(®r) = ggg w00
000,
By (6r) = Oy his(8r) = gaay e

variables X and Y, the two Bayesian networks X — Y and
X « Y are equivalent representations for the joint probability
mass function of the binary valued variables. For the former,
the parameters are uniquely specified by the three values
0, = (6,0, 65). Likewise for the latter, the parameters are
specified by 6; = (6,, 60y, 0y5). The function h (6;) such that
d € {u,r,l} computes a probability p. from the parameters
for one of three network parameters as determined by d. For
example,
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Different h. functions—in the following we use / instead of
h. for ease of reading—are provided in Table I for 6,. The
vector functions hy 4(6,) simply transforms 6, into 6, for
d,del{url).

Usually, it is assumed the parameters for the PGMs are
known precisely. For these cases, the inferences are simply
the computations of different 4 functions to compute the
probabilities for the values of latent variables conditioned on
the evidence formed by the observed variable values. Various
inference methods such as variable elimination [9], belief
propagation [10] and junction-tree [11] can precisely compute
these probability values. Note that the more efficient belief
propagation provides precise inference, but only over poly-tree
network structures. At inference time, it is assumed the PGM
parameters 6, are known. These parameters are either pro-
vided by a domain expert based upon his/her experience (i.e.,
epistemic domain knowledge) or learnt from training/historical
data. Here, we assume that the domain knowledge to derive
6, is evidence driven by the data one way or the other.

In general, the parameters can be determined as the maxi-
mum a posterior (MAP) estimate from the observed training
data t, [6], i.e.,

0u = arg maxlog (P(t,: 6. f(0) @)

where f(6) is a prior distribution for the parameters that can
naturally be modeled as Dirichlet distributed. For instance,
10,) = f5(0; (@, @) f5(6y115 (@1, @50)) S5 (O3 (@1, @pe)). (5)

For complete data, (4) is simple to compute as the logarithm
term can be decomposed as the sum of the logarithm of
the individual elements of 6,. For incomplete data, however,
latent variables do not enable the simple decomposition. The
EM algorithm [6] provides an iterative framework to enable



such simplified decompositions at each step. As such, t, is

augmented with the latent data T, that is complicating the

maximization process. Note that the possible values of T, are

t; € T,. Given the estimate for the parameters at step ¢ 02),

the expectation step determines a Q-function as
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The maximization step determines the update parameters as
0" = argmax 0(6s;6,). ™

For the case of determining the parameters of the Bayesian
network X — Y, let C, X and Y represent the set of
training observations for the values of X and Y together,
the values of variable X alone, and the values of variable Y
alone, respectively. For the latent-free observations, ny, is the
number of instantiations for which X = x and Y =y, ie.,
nyx = l{(x;,y:) € C : x; = x,y; = y}|. Similarly, nyz, ny, and ng
are defined so that ny, +nyz + ny, + nyz = |C|. Likewise, n, and
ny are the number of times X = x and X = X for the X-only
observations so that n, + nz = |X|. Finally, n, + ny = |Y|.

Now the Q function for 6, is
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Maximization of (8) leads to the updates
Ry + Ny + 1+ by (6 + nghys (6 + (@, — 1)
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The EM method simply starts with an initial parameter es-
timate #© and iterates over (9) until convergence. We set
ay = @z = 3 and @, = a5x = ayz = @z = 2. These values
are chosen so that the EM can always return a finite value and
so the MAP estimate can correspond to the expectation of the
posterior when using an uniform prior and |X| = |Y| = 0.
Finally, we set the initial estimate as the MAP estimate when
using only the C and X observations, i.e.,

g0 _ My + Ny + 1y + 2 Ny, + 1
" ICl +|X] + 4

nyz + 1

). (10)
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Similarly, the EM can be used to determine the MAP estimates
for 6§, and 6,. For equivalent priors, one can alternatively
use the transformations h;, to compute the MAP estimate
for one representation using the estimates from an equivalent
representation.

While the EM provides estimates for the model parameters,
it does not provide an confidence in these values. It only
provides a sense of the mean value for the parameters over
the possible distribution of possible values. It is helpful to
understand the spread of that distribution as well. This will

allow the decision maker to assess risk better and whether or
not to invest in gathering more training data to improve the
abilities of the reasoning network model.

C. Second-Order PGMs

For complete training data, the posterior distribution for
the PGM parameters are Dirichlet distributed. The natural
uninformative prior for 6, is uniform over S; so that ay, =
@yz = @3 = a3z = 1. The transformations 6, = h,4(6,) and
9, = h,,d(Od) leads to

f0) =1 f0,)=06.(1-60,) < f(6)=26,1-86,) )

as shown in Appendix A. Using this uninformative prior, it is
straightforward to derive the posteriors for the parameters as

[, = ﬁa(0u§(lyx),

(6, = f5(0; @x) f5(Oys @yi) f5(Oyi; @yiz)

f6) = ﬁ3(0y§ Uy)f/3(0x|y; CYX|y)fﬁ(9x|y; G’X\y),
where ayx = [ny, + 1,nye + 1,05 + 1,ngz + 1], @y = [nyc +
Lnge + 1], ayir = [nyz + Lnge + 1], axy = [0y + 1,0y + 1],
axy = [y + Linge + 1], ax = [0y, + 0y, + 2,05 + 0y + 2],
ay = [ny, + nyz + 2,05, + ngx + 2].

Second-order inference determines the distributions for the
inferred probabilities given the posterior distribution for the
model parameters. The second-order inference methods for
Bayesian networks (see [4], [5]) assume the parameters are
statically independent, which is true for the complete training
data as can be verified for the two-node case by the posterior
in (12). Both methods use the ‘delta method’ to approximate
the distribution of the inferred probabilities by approximating
its first two moments. In [4], variance elimination is used
to compute partial derivatives, while in [5] the moments are
propagated via an extension of belief propagation, which is
much more efficient but is valid only for poly-tree networks.
In any event, the first order inference process performs a
transformation of the model parameters, €.g., 6y, = hy,(6,)
(see Table I). The ‘delta method’ approximates the transfor-
mation through a first-order Tayor series approximation about

the mean value of the model Parameters so that in general
h(0.) ~ h(E[O4]) + Vo h(E[O41)(0; — E[O4]), 13)

12)

so that

E[h(©,)] = h(E[®,]), VAR[A(6,)] = V)RV, (14)

where R is the covariance matrix for the model parameters.
The left side of (14) simply states that mean inferences are the
standard first-order inferences operating on the mean values
for model parameters. The new part of the second-order pro-
cessing is simply the right side of (14) that approximates the
variance for the distribution of the inferred probabilities. The
primary distinction among the existing second-order inference
methods, e.g., [4], [5], is in computing the gradient in (14).

For complete training data, the covariance matrix in (14)
is diagonal where the variance terms are derived from the
Dirichlet parameters in (12) via (3). For incomplete training
data, the model parameters are not necessarily statically inde-
pendent and R is not diagonal. The next section investigates
the determination of R due to incomplete training data for
purposes of second-order inferences via (14).



ITI. SECOND-ORDER LEARNING OVER INCOMPLETE DATA

This section discusses the determination of the covariance
matrix for the model parameters in light of incomplete training
data. The first subsection determines the covariance from the
exact posterior distribution for the model parameters. However,
the complexity of the method increases as the number of
partial data increases. The second subsection estimates the
covariance matrix from the inverse of the FIM.

A. Posterior Analysis

The likelihood of the i-th complete measurement (x;,y;) €
XX Y in C is hy,(6;). Note that the alphabets X = {x, X} and
Y = {y,y}. Similarly, the likelihoods of the i-th incomplete
measurements in X and Y are h,,(6,) and h,,(,), respectively,
where x; € X and y; € Y. Combining these likelihoods with
the noninformative prior in (11), it is easy to formulate the
posterior distribution for 8, for Markov and Bayesian network
representations as

1
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where Z is the normalizing constant so that all densities
integrate to one. Note that Z is the same for all representations
as they are equivalent distributions via a change-of-variable.

One can compute the exact moments for inferred marginal
variable values conditioned on the observations or the other
variable. This is done by exploiting the binomial expansion
property. For instance, the mean and covariance for 6, can be
computed as

E[6,] = (81,0,0 80,1,0 80,0,1 (16)
' go,o,o’ go,o,o’ £0,0,0
867,1+0],1,012+02.013+03
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where as shown in Appendix B, g, are computed as
ny ny
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i=0 j=0 (18)
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and ¢;; is the Kronecker delta function that is zero unless
i = j where it is one. Note that Z = gg0. Similarly, one
can compute the mean and covariances for 6, and 6,. From
(18), the computational complexity to compute the moments
of 0, grows as O(Y|?). For larger Bayesian networks, the
binomials become multinomials and the number of different

multinomials grows exponentially with the number of vari-
ables. As a result, the exact moment computations becomes
prohibitive and a faster method to estimate the covariance
matrix is needed.

B. Fisher Information

It is known that under mild regularity conditions for the
likelihood and the prior, the posterior distribution is asymp-
totically normal with mean given by the maximum likelihood
estimate and covariance equal to the inverse FIM [12], which
is a result of the Bernstein-von Mises theorem. As a result,
it is reasonable to approximate the distribution of the model
parameters using the output of the EM algorithm for the mean
and the Fisher information to approximate the covariance. As
least, these approximations of the moments will align with
those computed from the true posterior for a large number of
training samples.

Given that the observations are statistically independent of
each other, the log-likelihood for the collection of uninstanti-

ated observations T for the X — Y model is
L(T;6,) = 10g(P(X;, Y;:6,)) + ) | log(P(X;36,))
(X;.YpeC X;eX

+ ) log(P(Y;:6,)),
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The Fisher information matrix (FIM) is

F = Ex |V, L(T:6,) (V4 L(T:6,)"]. 0)

As shown in Appendix C, the FIM for incomplete training

data is .
e g U
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The covariance is estimated as the inverse of the FIM. Using
the matrix inversion lemma to determine the inverse of the FIM
leads to

1
R=D- mDVVTD, (23)
where .
CHXI . (B . 0
D= 0 e 0 ’ @4
Oy (1-0y5)
0 0 [CI(1-6x)

is a diagonal matrix representing the covariance due to solely
the latent-free and the x-only incomplete training observations

and
N hy(6,)(1 — hy(6,))
Y ’

The estimation of the covariance via (23) requires the model
parameters 6, which are unknown a priori. In practice, the
estimates from the EM algorithm 8, are used to determine R.
Because the EM method that iterates over (9) is biased, we
use a modified version of D in the simulations so that the

¥(8) = vI Dy (25)



covariance estimate via the FIM fits the true covariance for
the posterior for complete data. To this end,

Ox(1-0x)
[Cl+X|+5 0 (109 ) 0
— yx U —Oylx
D= 0 |Clox+3 P (109 ) ’ (26)
VXt OIx
0 0 [CI(1-61)+3

and the covariance is estimated via (21), where v and D are
given by (22) and (26), respectively. The mean value for the
model parameters are obtained from MAP estimates via EM.
The covariance matrix for the model parameters 6; and 6,
are similarly computed. Using the reparameterization property
of the FIM and taking the inverse, leads to the following
transformation between the covariance for 6, and for 6,

Ry, = Jn,, Ry, Iy, - (27

where Jp,, is the Jacobian for the transformation hgy . (64 ).
Setting ' = r and d = [ or d = u allows for the computation
of the covariances for 6; and 6,, respectively.

The complexity to compute the FIM is due to the expec-
tation over the possible variable values. For the two-node
network, simple closed form expressions result. For more gen-
eral network structures, the expectation will require numerical
computations. Nevertheless, the computational complexity for
the FIM is independent of the sizes of the latent-free |C|
and incomplete |X|, and |Y| training data. This is in contrast
to the exact computation of covariance from the posterior.
We expect that as the size of the network grows, the FIM
approximation remains feasible while the posterior method
become intractable.

C. Discussion about Second-Order Inference with Incomplete
Data Training

The variances of various inferences can be determined using
the ’delta method’. In this subsection, we investigate the
reduction of the variance for inferences due to the incomplete
training data. To this end, we use the standard form for D in
(24). Here, we consider inferring the probability that X = x
given the evidence that ¥ = y using the 6, parameters. To
this end, the second-order inference computes the mean and
variance of the inference probability via (14) using A,(6,) as
given in Table I so that

((Oubye 0401 -0 —6,.0.(1-6,) )

(0., + 631 = 0))’

For a |C| > 0 with no incomplete data, i.e., |X| = |Y| = 0,
the insertion of (28) into (14) results (after many simplifying

steps) into a baseline variance of
v hy(8,)IC]

Vo by = (28)

(29)

Clearly, an infinite amount of latent-free data will drive the
epistemic uncertainty about p,, to zero. On the other hand,
adding an infinite amount of Y-only data while keeping |C]
fixed and |X| = 0 does not change the variance. Such partial
data does not lower the epistemic uncertainty for py,. In
contrast, incorporation of an infinite amount of X-only data
when not using any Y-only data does lower the variance to

Variance

0 02 04 06 08 1
0

X

Fig. 1. Reduction in variance using an infinite amount of Y-only or Y- and
X-only training data as a function of 6,: (a) Nearly independent variables and
(b) strong dependency between variables.

VAR[6,,] = VO (1 — hy(8,) (30)
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The infinite amount of partial X-only does lower the un-
certainty about the inference, but the value of such data
exhibits diminishing returns as, in general, it cannot drive the
uncertainty to zero. Now, if both an infinite number of partial
X- and Y-only data ia added to the complete data, the variance

reduces further to (0, h+(8,)h5(6,)
VAR[Q)M]:V(C) Xy \YUr )5y \Ur )15\

. (31
o hxly(ar)hily(er)hy(er) + hx\)"(ar)hil_\?(ar)hy(ar) ( )

Figure 1 demonstrates the limits for the reduction in vari-
ance due to incomplete data for two cases where |C| = 20.
Figure 1(a) shows the case where the X and Y variables are
nearly independent with 6,, = .6 and 6, = .4 as 0, varies
from O to 1. In contrast, Figure 1(b) shows the case where two
variables have strong dependency with 6, = .8 and 6,z = .2.
The baseline variance for only the complete data is shown in
blue. In both cases, addition of X-only data does decrease the
variance; the decrease is more significant as 6, moves away
from its extreme value and shows higher aleatoric uncertainty.
The additional value of the Y-only data is less significant for
the nearly independent case where such partial data provide
little insight into the values of the latent X variable.

IV. SIMULATIONS

First, we compare the effectiveness of the variance of
the inferred probabilities to capture the uncertainty about
the estimate of its mean. To this end, we generated 1000
realizations of two-node networks where the ground truth joint
probabilities are selected uniformly over the simplex S4. For
each network both latent-free and incomplete training data
is generated. The mean and covariances are computed either
from the true posterior as in (16)-(17) or the EM iterations
in (9) lead to the mean estimates for the 6, parameters
and the covariance matrix is derived from the biased FIM
(where D is given by (26)). Finally, the variances of the
inferred probabilities are extracted via (14). As in the previous
section, the simulations focus on the inference of py,. To
characterize the quality of the variances, we compute the
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Fig. 2. DeCBoD plots for various methods to determine the distribution of the yy, inference for various incomplete training data when |C| = 20: (a) |X| = 100
and |Y| =0, (b) |X| =0 and |Y| = 100, and (c) |X| = 100 and |Y| = 100. Best close to the diagonal.

desired confidence bound divergence (DeCBoD) by comparing
the desired confidence bound strength to the ratio of times the
ground truth falls within the bound over the 1000 realizations.
The bounds are set by assuming the distribution of p,, is beta
with the computed mean and variance. More details about the
DeCBoD calculations is given in [5].

Figure 2 illustrates the DeCBoD for the moments extracted
from Posterior and Fisher methods for latent-free data with
IC] = 20 augmented by various types of incomplete data.
To illustrate the need to consider the correlations between
model parameters, the Independent Fisher method treats the
FIM derived covariance matrix as diagonal by zeroing out
the off diagonal term. The final method (EM+CVar) considers
extracting the covariance matrix from the latent-free C data
only while extracting the mean from the EM over all the
data. In this case, the variances for inferences are larger
than the EM error. Overall, both the Posterior and Fisher
methods faithfully provides bounds whose actual confidence is
consistent with the desired strength. The Independent Fisher
method underestimates the error by providing tighter bounds
than desired when |Y| > 0 making the true covariance
non-diagonal. The EM+CVar method usually provides looser
bounds than desired. The exception is when [Y| = 0 as the
X-only incomplete data does not inform the py, inference as
discovered in Section III-C.

Figures 3-5 compare the variances of p,, due to the Pos-
terior and Fisher methods with and without the augmentation
of the incomplete data. The posterior and Fisher variances
are correlated with each other, but the correlation weakens
for larger variances. For the most part, the variances are
smaller without the incomplete data augmentation as long as
X-only data augments the complete data. Occasionally, the
extra incomplete data increases the variances when it changes
the mean values to be closer to 0.5. When |X| = O, the
incomplete data does not decrease the posterior variance. The

Fisher variance on average does not increase or decrease with
the augmented data. The change in variance is due to changes
in the mean in the EM method.

V. CONCLUSIONS

In this paper, we investigated the implication of incomplete
BN . Specifically, the paper develops a method to extract the
mean and variance of the model parameters from the true
posterior. Furthermore, we derive a computationally efficient
approximation of the parameter covariances from the FIM.
This leads to closed form expressions for the variances of in-
ferred probabilities, which informs about the effectiveness and
limitations of incomplete training data. Simulations validate
the effectiveness of the true and approximative covariances
to capture the uncertainty of the inferred probabilities. Fur-
thermore, the simulations illustrate when and when not partial
measurements reduce the variances of an inference.

It is expected that FIM will provide a scalable method
to compute the model parameters for larger PGMs. Future
work will formulate the computational engine to estimate
the covariance for arbitrary Bayesian networks via the FIM
when incorporating incomplete data. Furthermore, we will
investigate Laplace approximations for even more computa-
tional efficiency. We hope that this effort will lead to better
theoretical understanding of what types of incomplete training
data are effective or not in reducing the variance of a particular
inference based upon the structure of the Bayesian network.

APPENDIX A
DERIVATION OF PRIORS FOR 6, AND 6,

First, the transformations h,,(-) and h;,(-) are one-to-one
because their inverse functions are h, .(-) and h,,(-), respec-
tively. Given f(6,) = 1, by the ‘change of variables’ property
for distributions,

f(8,) = det(Jn,,) and f(6,) = det(Jn,,),
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where Jun = [Voh, - Vghig]” is the Jacobian for the vector
function h. Since

Oyix 0, 0
Jh,=| 6 O 1-6, | and (32)
1-6,, -0, 0
Oy 0, 0
Jhy=| 1-04 -6, 0 33)
-5 0 1-6,
then det(Jy,,) = 6:(1 - 6,) and det(Jy,,) = 6:(1 — 6,). U
APPENDIX B
DERIVATION OF gy k¢
ge=2 f (0.) (Oy1) (By2)" £ (6,)d6,db, by
_ Ty y +igx+1y K] nyz+nyz+ng+1 gtk nx
= f@x (I -6,)" +nyztnzt lex (1- ey\x) ) (34)

SO = 00 (00 + Oya(1 — 0,))"

: ((1 - G\M‘)QX + (1 - gy\f)(l - ex))n“-.dexdey\xdgyl)?-

Now expanding the polynomials associated to p, and p;y via
the binomial expansion property leads to

Vly ﬂy
_ ny\(ny txtirivj—1 o1 _ te+ny—itny—j—1
8re = ZZ(:)(])[IQ‘ (1 = g,)m™==I=40,

i=0 j=0
' f GSi;t+k+i(1 _Hylx)n?ﬁjdgy\x f H’vl\)xx ﬂ”M’H(l _9}'I5r)nﬂ+nrjd9y\x]~
(35)

Given that the three integrals represent beta functions (see (2)),

(18) follows. O
APPENDIX C
DERIVATION OF THE FIM FOR INCOMPLETE TRAINING
DATA

Given that each instantiation of the network values is sta-
tistically independent of the others, the FIM for the likelihood

given in (19) can be expressed as
F =|C| - E[Vy, log(hyx(6,))Vy, log(hyx(6,))]

+1X] - E[Vy, log(hx(8,))V log(hx(6,))]
+|Y| - E[Vs, log(hy(6,))Vy, log(hy(6,))]
E [V0, IOg(hyx)VZ, log(hyx)] =
hy Vg, 10g(hy )V log(hy )

(36)

(¥, y)eXxY
(5 )
= yixYx X
0)’\X0x 0 0 0
1 [ 9)21; 0 —0,:(1-6,) ]
+ 0 0 0
(1 —
Q)IX( gx) _gy‘i(] _ gx) 0 (l _ 49)()2
1 (1 - 0)’|X)2 _(1 - zgyl)r)ex 0
t _(1 -6 |x)9x 9,( 0
(1 - Qy\x)gx 0 y 0 0
1 1-6)° 0 (1-6y)(1 -6y
_— 0 0 0
=000 =00 1 -g91-0) 0 (1-6
ﬁx(ll—ﬂv) ;) 0
= 0 6)"*(119)%) (15)9
O (’,\'IX( 1 *gy\i)

(37)

E[V,, log(hx)Vg_ log(hx)] = Z hyVg, log(hx')ng log(h,)

x'eX

1 1 0 0 (38)
=—10 0 0.
ex(l - 9,\) 0O 0 O
E[V, log(hy)V§, log(hy)] = Z hy Vg, log(hy )V log(hy)
| yeY (39)
_ T
b Vo, 1,V hy.
Insertion of (37)-(39) into (36) and defining v via (22) leads
to (21). ([l
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