In the Markov chain model of an autoregressive moving average chart, the post-transition states of nonzero transition probabilities are distributed along one-dimensional lines of a constant gradient over the state space. By considering this characteristic, we propose discretizing the state space parallel to the gradient of these one-dimensional lines. We demonstrate that our method substantially reduces the computational cost of the Markov chain approximation for the average run length in two- and three-dimensional state spaces. Also, we investigate the effect of these one-dimensional lines on the computational cost. Lastly, we generalize our method to state spaces larger than three dimensions.
Parallel discretization of the Markov chain approximation for the autoregressive moving average chart
Ulkhaq M. M.
2019-01-01
Abstract
In the Markov chain model of an autoregressive moving average chart, the post-transition states of nonzero transition probabilities are distributed along one-dimensional lines of a constant gradient over the state space. By considering this characteristic, we propose discretizing the state space parallel to the gradient of these one-dimensional lines. We demonstrate that our method substantially reduces the computational cost of the Markov chain approximation for the average run length in two- and three-dimensional state spaces. Also, we investigate the effect of these one-dimensional lines on the computational cost. Lastly, we generalize our method to state spaces larger than three dimensions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.