Majority voting is often employed as a tool to increase the robustness of data-driven decisions and control policies, a fact which calls for rigorous, quantitative evaluations of the limits and the potentials of majority voting schemes. This letter focuses on the case where the voting agents are binary classifiers and introduces novel bounds on the probability of misclassification conditioned on the size of the majority. We show that these bounds can be much smaller than the traditional upper bounds on the probability of misclassification. These bounds can be used in a ‘Probably Approximately Correct’ (PAC) setting, which allows for a practical implementation.

Novel Bounds on the Probability of Misclassification in Majority Voting: Leveraging the Majority Size

Carè, Algo;Campi, M. C.;Ramponi, F. A.;
2021-01-01

Abstract

Majority voting is often employed as a tool to increase the robustness of data-driven decisions and control policies, a fact which calls for rigorous, quantitative evaluations of the limits and the potentials of majority voting schemes. This letter focuses on the case where the voting agents are binary classifiers and introduces novel bounds on the probability of misclassification conditioned on the size of the majority. We show that these bounds can be much smaller than the traditional upper bounds on the probability of misclassification. These bounds can be used in a ‘Probably Approximately Correct’ (PAC) setting, which allows for a practical implementation.
File in questo prodotto:
File Dimensione Formato  
NovelBounds09272617.pdf

solo utenti autorizzati

Descrizione: manoscritto accettato per pubblicazione
Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 569.16 kB
Formato Adobe PDF
569.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/537247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact