Mutations in pank2 gene encoding pantothenate kinase 2 determine a pantothenate kinase-associated neurodegeneration, a rare disorder characterized by iron deposition in the globus pallidus. To extend our previous work, we performed microinjections of a new pank2-specific morpholino to zebrafish embryos and thoroughly analyzed vasculature development. Vessels development was severely perturbed in the head, trunk, and tail, where blood accumulation was remarkable and associated with dilation of the posterior cardinal vein. This phenotype was specific as confirmed by p53 expression analysis and injection of the same morpholino in pank2-mutant embryos. We can conclude that pank2 gene is involved in vasculature development in zebrafish embryos. The comprehension of the underlining mechanisms could be of relevance for understanding of pantothenate kinase-associated neurodegeneration.

Abnormal Vasculature Development in Zebrafish Embryos with Reduced Expression of Pantothenate Kinase 2 Gene

Khatri, D
Investigation
;
Mignani, L
Investigation
;
Zizioli, D
Writing – Original Draft Preparation
;
Ritelli, M
Membro del Collaboration Group
;
Monti, E
Writing – Review & Editing
;
Finazzi, D
Writing – Original Draft Preparation
2020-01-01

Abstract

Mutations in pank2 gene encoding pantothenate kinase 2 determine a pantothenate kinase-associated neurodegeneration, a rare disorder characterized by iron deposition in the globus pallidus. To extend our previous work, we performed microinjections of a new pank2-specific morpholino to zebrafish embryos and thoroughly analyzed vasculature development. Vessels development was severely perturbed in the head, trunk, and tail, where blood accumulation was remarkable and associated with dilation of the posterior cardinal vein. This phenotype was specific as confirmed by p53 expression analysis and injection of the same morpholino in pank2-mutant embryos. We can conclude that pank2 gene is involved in vasculature development in zebrafish embryos. The comprehension of the underlining mechanisms could be of relevance for understanding of pantothenate kinase-associated neurodegeneration.
File in questo prodotto:
File Dimensione Formato  
Khatri2020_Article_AbnormalVasculatureDevelopment.pdf

Open Access dal 25/11/2021

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/536915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact