Relative Heffter arrays, denoted by H-t (m, n; s, k), have been introduced as a generalization of the classical concept of Heffter array. A H-t (m, n; s, k) is an m x n partially filled array with elements in Z(v), where v = 2nk + t, whose rows contain s filled cells and whose columns contain k filled cells, such that the elements in every row and column sum to zero and, for every x is an element of Z(v), not belonging to the subgroup of order t, either x or -x appears in the array. In this paper we show how relative Heffter arrays can be used to construct biembeddings of cyclic cycle decompositions of the complete multipartite graph K2nk+t /t x t into an orientable surface. In particular, we construct such biembeddings providing integer globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n 3 (mod 4) and for k = 3 with t = n, 2n, any odd n.

Relative Heffter arrays and biembeddings

Costa, S;Pasotti, A
;
Pellegrini, MA
2020-01-01

Abstract

Relative Heffter arrays, denoted by H-t (m, n; s, k), have been introduced as a generalization of the classical concept of Heffter array. A H-t (m, n; s, k) is an m x n partially filled array with elements in Z(v), where v = 2nk + t, whose rows contain s filled cells and whose columns contain k filled cells, such that the elements in every row and column sum to zero and, for every x is an element of Z(v), not belonging to the subgroup of order t, either x or -x appears in the array. In this paper we show how relative Heffter arrays can be used to construct biembeddings of cyclic cycle decompositions of the complete multipartite graph K2nk+t /t x t into an orientable surface. In particular, we construct such biembeddings providing integer globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n 3 (mod 4) and for k = 3 with t = n, 2n, any odd n.
File in questo prodotto:
File Dimensione Formato  
CostaPasottiPellegriniRelativeHeffterAndBiembeddings.pdf

gestori archivio

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 462.93 kB
Formato Adobe PDF
462.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/535720
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact