Let F be a 2-regular graph of order v. The Oberwolfach problem, OP(F), asks for a 2-factorization of the complete graph on v vertices in which each 2-factor is isomorphic to F. In this paper, we give a complete solution to the Oberwolfach problem over infinite complete graphs, proving the existence of solutions that are regular under the action of a given involution free group G. We will also consider the same problem in the more general context of graphs F that are spanning subgraphs of an infinite complete graph K and we provide a solution when F is locally finite. Moreover, we characterize the infinite subgraphs L of F such that there exists a solution to OP(F) containing a solution to OP(L).

A complete solution to the infinite Oberwolfach problem

Costa S.
2020-01-01

Abstract

Let F be a 2-regular graph of order v. The Oberwolfach problem, OP(F), asks for a 2-factorization of the complete graph on v vertices in which each 2-factor is isomorphic to F. In this paper, we give a complete solution to the Oberwolfach problem over infinite complete graphs, proving the existence of solutions that are regular under the action of a given involution free group G. We will also consider the same problem in the more general context of graphs F that are spanning subgraphs of an infinite complete graph K and we provide a solution when F is locally finite. Moreover, we characterize the infinite subgraphs L of F such that there exists a solution to OP(F) containing a solution to OP(L).
File in questo prodotto:
File Dimensione Formato  
CostaInfiniteOberwolfach.pdf

gestori archivio

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 599.96 kB
Formato Adobe PDF
599.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/535717
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact