Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible photo-luminescence emission permits us to directly measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also revealed.

Nonlinear beam self-imaging and self-focusing dynamics in a GRIN multimode optical fiber: Theory and experiments

Mangini F.;Niang A.;
2020-01-01

Abstract

Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible photo-luminescence emission permits us to directly measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also revealed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/535517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 55
social impact