The risk of falling in older adults has been related, among other factors, to the reduction of the rate of torque development (RTD) with age. It is well known that both structural/peripheral and neural factors can influence the RTD. The purpose of this study was to compare the normalized RTD in young and older participants obtained during a) rapid voluntary tension production and b) neuromuscular electrical stimulation. The tibialis anterior of 19 young subjects (10 males and 9 females; age 21–33 years old) and 19 older participants (10 males and 9 females; age 65–80 years old) was studied. The subjects performed a series of maximal isometric explosive dorsiflexions and underwent trains of supra-maximal electrical stimulations (35 Hz) on the tibialis anterior motor point. Muscle shortening was indirectly measured using a laser (surface mechanomyogram, MMG). Both torque and MMG were normalized to their maximum value. Using a 20 ms sliding window on the normalized torque signal, the normalized maximum RTD was calculated for both voluntary and stimulated contractions. Active stiffness of the muscle- tendon unit was calculated as the area of the normalized torque with respect to the normalized MMG. Normalized maximum RTD was found significantly lower in older adults during voluntary activity (young: 751.9 ± 216.3%/s and old: 513.9 ± 173.9%/s; P < .001), and higher during stimulated contractions (young: 753.1 ± 225.9%/s and old: 890.1 ± 221.3%/s; P = .009). Interestingly, active stiffness was also higher in older adults (young: 3524.6 ± 984.6‰ and old 4144.6 ± 816.6‰; P = .041) and significantly correlated to the normalized maximum RTD during stimulated contractions. This dichotomy suggests that modifications in the structural/peripheral muscle properties are not sufficient to counteract the age-related decrease in neural drive to the muscle during voluntary isometric contractions in aged participants.
Normalized maximal rate of torque development during voluntary and stimulated static contraction in human tibialis anterior: Influence of age
Cogliati M.;Cudicio A.;Toscani F.;Gaffurini P.;Bissolotti L. M.;Orizio C.;Negro F.
2020-01-01
Abstract
The risk of falling in older adults has been related, among other factors, to the reduction of the rate of torque development (RTD) with age. It is well known that both structural/peripheral and neural factors can influence the RTD. The purpose of this study was to compare the normalized RTD in young and older participants obtained during a) rapid voluntary tension production and b) neuromuscular electrical stimulation. The tibialis anterior of 19 young subjects (10 males and 9 females; age 21–33 years old) and 19 older participants (10 males and 9 females; age 65–80 years old) was studied. The subjects performed a series of maximal isometric explosive dorsiflexions and underwent trains of supra-maximal electrical stimulations (35 Hz) on the tibialis anterior motor point. Muscle shortening was indirectly measured using a laser (surface mechanomyogram, MMG). Both torque and MMG were normalized to their maximum value. Using a 20 ms sliding window on the normalized torque signal, the normalized maximum RTD was calculated for both voluntary and stimulated contractions. Active stiffness of the muscle- tendon unit was calculated as the area of the normalized torque with respect to the normalized MMG. Normalized maximum RTD was found significantly lower in older adults during voluntary activity (young: 751.9 ± 216.3%/s and old: 513.9 ± 173.9%/s; P < .001), and higher during stimulated contractions (young: 753.1 ± 225.9%/s and old: 890.1 ± 221.3%/s; P = .009). Interestingly, active stiffness was also higher in older adults (young: 3524.6 ± 984.6‰ and old 4144.6 ± 816.6‰; P = .041) and significantly correlated to the normalized maximum RTD during stimulated contractions. This dichotomy suggests that modifications in the structural/peripheral muscle properties are not sufficient to counteract the age-related decrease in neural drive to the muscle during voluntary isometric contractions in aged participants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.