The cornerstone of nanoscience and nanotechnology are nanoparticles which have immense power and functional ability in diverse fields. Nanoparticles are synthesized by physical, chemical methos but limitations are due to its toxicity. We have discussed few green synthesis routes which are eco friendly and less toxic methods, including alage, microorganisms, plants etc. Expoiting the potential of medicinal plants, is one of the green synthesis routes and is significant because the current therapeutic approaches have toxicity problems and microbial multidrug resistance issues. As the metal nanoparticles have received great attention across the globe, so in this study we have discussed and focused many different metallic nanoparticles obtained by green synthesis using medicinal plants. We have also discussed the types, size and medicinal properties like antibacterial, antifungal, anticancer, antiviral activities of nanoparticles. The biomolecules, secondary metabolites and coenzymes present in the plants help in easy reduction of metal ions to nanoparticles. Such nanoparticles are considered as potential antioxidants and promising candidates in cancer treatment. The simplified model summarises the green synthesis, its characterization using physicochemical means and their biomedical applications. Succinctly, we have discussed the recent advances in green synthesis of metallic nanoparticles, milestones, therapeutic applications and future perspectives of biosynthesized nanoparticles from some important medicinal plants.

Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications

Bontempi E.;
2020-01-01

Abstract

The cornerstone of nanoscience and nanotechnology are nanoparticles which have immense power and functional ability in diverse fields. Nanoparticles are synthesized by physical, chemical methos but limitations are due to its toxicity. We have discussed few green synthesis routes which are eco friendly and less toxic methods, including alage, microorganisms, plants etc. Expoiting the potential of medicinal plants, is one of the green synthesis routes and is significant because the current therapeutic approaches have toxicity problems and microbial multidrug resistance issues. As the metal nanoparticles have received great attention across the globe, so in this study we have discussed and focused many different metallic nanoparticles obtained by green synthesis using medicinal plants. We have also discussed the types, size and medicinal properties like antibacterial, antifungal, anticancer, antiviral activities of nanoparticles. The biomolecules, secondary metabolites and coenzymes present in the plants help in easy reduction of metal ions to nanoparticles. Such nanoparticles are considered as potential antioxidants and promising candidates in cancer treatment. The simplified model summarises the green synthesis, its characterization using physicochemical means and their biomedical applications. Succinctly, we have discussed the recent advances in green synthesis of metallic nanoparticles, milestones, therapeutic applications and future perspectives of biosynthesized nanoparticles from some important medicinal plants.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S187881811931299X-main.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/534041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 125
social impact