Novel insight on the local surface properties of ZnO nanowires (NW) deposited by the evaporation-condensation method on Ag-covered Si substrates is proposed, based on the results of comparative studies by using the scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) methods, respectively. SEM studies showed that ZnO nanowires (nanoribbons) are mostly isolated and irregular, having the average length μm and the average at the level of tens nm, respectively. Our XPS studies confirmed their evident surface non-stoichiometry, combined with strong C surface contaminations, which was related to the existence of oxygen-deficient regions. Additionally, TDS studies showed that undesired surface contaminations (including C species and hydroxyl groups) on the surface of ZnO NWs can be removed almost completely, leading to an increase of the final non-stoichiometry. Both effects are of great importance when using ZnO NWs for the detection of oxidizing gases, because the undesired C contaminations (including C-OH species) play the role of undesired barriers for the gas adsorption, especially at the low working temperature, additionally affecting the uncontrolled sensor ageing effect.

Novel insight on the local surface properties of ZnO nanowires

Zappa D.;Comini E.;
2020-01-01

Abstract

Novel insight on the local surface properties of ZnO nanowires (NW) deposited by the evaporation-condensation method on Ag-covered Si substrates is proposed, based on the results of comparative studies by using the scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) methods, respectively. SEM studies showed that ZnO nanowires (nanoribbons) are mostly isolated and irregular, having the average length μm and the average at the level of tens nm, respectively. Our XPS studies confirmed their evident surface non-stoichiometry, combined with strong C surface contaminations, which was related to the existence of oxygen-deficient regions. Additionally, TDS studies showed that undesired surface contaminations (including C species and hydroxyl groups) on the surface of ZnO NWs can be removed almost completely, leading to an increase of the final non-stoichiometry. Both effects are of great importance when using ZnO NWs for the detection of oxidizing gases, because the undesired C contaminations (including C-OH species) play the role of undesired barriers for the gas adsorption, especially at the low working temperature, additionally affecting the uncontrolled sensor ageing effect.
File in questo prodotto:
File Dimensione Formato  
Kwoka_2020_Nanotechnology_31_465705.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/533568
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 45
social impact