We previously described synapsin III (Syn III) as a synaptic phosphoprotein that controls dopamine release in cooperation with α-synuclein (aSyn). Moreover, we found that in Parkinson's disease (PD), Syn III also participates in aSyn aggregation and toxicity. Our recent observations point to threo-methylphenidate (MPH), a monoamine re-uptake inhibitor that efficiently counteracts the freezing-gait characteristic of advanced PD, as a ligand for Syn III. We have designed and synthesised two different fluorescently labelled MPH derivatives, one with Rhodamine Red (RHOD) and one with 5-carboxytetramethylrhodamine (TAMRA), to be used for assessing MPH binding to Syn III by FRET. TAMRA-MPH exhibited the ideal characteristics to be used as a FRET acceptor, as it was able to enter into the SK-N-SH cells and could interact specifically with human green fluorescent protein (GFP)-tagged Syn III but not with GFP alone. Moreover, the uptake of TAMRA-MPH and co-localization with Syn III was also observed in primary mesencephalic neurons. These findings support that MPH is a Syn III ligand and that TAMRA-conjugated drug molecules might be valuable tools to study drug-ligand interactions by FRET or to detect Syn III in cytological and histological samples.

Design and Synthesis of Fluorescent Methylphenidate Analogues for a FRET-Based Assay of Synapsin III Binding

Longhena F.
Formal Analysis
;
Faustini G.
Formal Analysis
;
Bellucci A.
Writing – Original Draft Preparation
;
2020-01-01

Abstract

We previously described synapsin III (Syn III) as a synaptic phosphoprotein that controls dopamine release in cooperation with α-synuclein (aSyn). Moreover, we found that in Parkinson's disease (PD), Syn III also participates in aSyn aggregation and toxicity. Our recent observations point to threo-methylphenidate (MPH), a monoamine re-uptake inhibitor that efficiently counteracts the freezing-gait characteristic of advanced PD, as a ligand for Syn III. We have designed and synthesised two different fluorescently labelled MPH derivatives, one with Rhodamine Red (RHOD) and one with 5-carboxytetramethylrhodamine (TAMRA), to be used for assessing MPH binding to Syn III by FRET. TAMRA-MPH exhibited the ideal characteristics to be used as a FRET acceptor, as it was able to enter into the SK-N-SH cells and could interact specifically with human green fluorescent protein (GFP)-tagged Syn III but not with GFP alone. Moreover, the uptake of TAMRA-MPH and co-localization with Syn III was also observed in primary mesencephalic neurons. These findings support that MPH is a Syn III ligand and that TAMRA-conjugated drug molecules might be valuable tools to study drug-ligand interactions by FRET or to detect Syn III in cytological and histological samples.
File in questo prodotto:
File Dimensione Formato  
Casiraghi et al ChemMedChem2020.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/532717
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact