In this paper, the possibility to steer and confine live human cells by means of acoustic waves, such as flexural plate waves (FPWs), generated by piezoelectric actuators applied to non-piezoelectric substrates, has been explored. A device with two lead zirconate titanate (PZT) actuators with an interdigital transducer (IDT) screen-printed on an alumina (Al2O3) substrate has been fabricated and tested. The experimental results show that, by exciting the actuators at their resonant frequencies, FPW modes are generated in the substrate. By exploiting the device, arrangements of cells on lines at frequency-dependent distances have been obtained. To maintain the alignment after switching off the actuator, cells were entrapped in a fibrin clot that was cultured for several days, enabling the formation of cellular patterns.

Arrangement of live human cells through acoustic waves generated by piezoelectric actuators for tissue engineering applications

Marialaura Serzanti;Marco Baù;Marco Demori;Serena Calamaio;Manuela Cominelli;Pietro Luigi Poliani;Patrizia Dell’Era
;
Marco Ferrari
;
Vittorio Ferrari
2020-01-01

Abstract

In this paper, the possibility to steer and confine live human cells by means of acoustic waves, such as flexural plate waves (FPWs), generated by piezoelectric actuators applied to non-piezoelectric substrates, has been explored. A device with two lead zirconate titanate (PZT) actuators with an interdigital transducer (IDT) screen-printed on an alumina (Al2O3) substrate has been fabricated and tested. The experimental results show that, by exciting the actuators at their resonant frequencies, FPW modes are generated in the substrate. By exploiting the device, arrangements of cells on lines at frequency-dependent distances have been obtained. To maintain the alignment after switching off the actuator, cells were entrapped in a fibrin clot that was cultured for several days, enabling the formation of cellular patterns.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/530885
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact