Because of the severe increase of mortality by cardiovascular diseases, there has been rising interest among the tissue-engineering community for small-sized blood vessel substitutes. Here we present small diameter vascular grafts made of slow degradable poly(epsilon-caprolactone) nanofibers obtained by electrospinning. The process was optimized by a factorial design approach that led to reproducible grafts with inner diameters of 2 and 4 mm, respectively. Fiber sizes, graft morphology, and the resulting tensile stress and tensile strain values were studied as a function of various parameters in order to obtain optimal vascular grafts for implantation after gamma-sterilization. The influence of polymer concentration, solvent, needle-collector distance, applied voltage, flow rate, and spinning time has been studied. Consequently, an optimized vascular graft was implanted as an abdominal aortic substitute in nine rats for a feasibility study. Results are given following up a 12-week implantation period showing good patency, endothelization, and cell ingrowth.

Factorial design optimization and in vivo feasibility of poly(ε-caprolactone)- micro- and nanofiber based small diameter vascular grafts

MANDRACCHIA D;
2009-01-01

Abstract

Because of the severe increase of mortality by cardiovascular diseases, there has been rising interest among the tissue-engineering community for small-sized blood vessel substitutes. Here we present small diameter vascular grafts made of slow degradable poly(epsilon-caprolactone) nanofibers obtained by electrospinning. The process was optimized by a factorial design approach that led to reproducible grafts with inner diameters of 2 and 4 mm, respectively. Fiber sizes, graft morphology, and the resulting tensile stress and tensile strain values were studied as a function of various parameters in order to obtain optimal vascular grafts for implantation after gamma-sterilization. The influence of polymer concentration, solvent, needle-collector distance, applied voltage, flow rate, and spinning time has been studied. Consequently, an optimized vascular graft was implanted as an abdominal aortic substitute in nine rats for a feasibility study. Results are given following up a 12-week implantation period showing good patency, endothelization, and cell ingrowth.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/530052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 129
social impact