The antibacterial activity of the S-unsubstituted- and S-benzyl-substituted-2-mercapto-benzothiazoles 1-4 has been evaluated after complexation with Methyl-β-Cyclodextrin (Me-β-CD) or incorporation in solid dispersions based on Pluronic® F-127 and compared with that of the pure compounds. This with the aim to gain further insights on the possible mechanism(s) involved in the CD-mediated enhancement of antimicrobial effectiveness, a promising methodology to overcome the microbial resistance issue. Together with Differential Scanning Calorimetry, FT-IR spectroscopy and X-ray Powder Diffraction investigations, a molecular modeling study focused on compounds 2 and 4 showed that the S-unsubstituted compound 2/Me-β-CD complex should be more stable than S-benzyl-substituted 4/Me-β-CD. Only for 1/Me-β-CD or, particularly, 2/Me-β-CD complexes, the antibacterial effectiveness was enhanced in the presence of selected bacterial strains. The results herein presented support the mechanisms focusing on the interactions of the bacterial membrane with CD complexes more than those focusing on the improvement of dissolution properties consequent to CD complexation.

Effect of Methyl-β-Cyclodextrin on the antimicrobial activity of a new series of poorly water-soluble benzothiazoles

Delia Mandracchia;
2019-01-01

Abstract

The antibacterial activity of the S-unsubstituted- and S-benzyl-substituted-2-mercapto-benzothiazoles 1-4 has been evaluated after complexation with Methyl-β-Cyclodextrin (Me-β-CD) or incorporation in solid dispersions based on Pluronic® F-127 and compared with that of the pure compounds. This with the aim to gain further insights on the possible mechanism(s) involved in the CD-mediated enhancement of antimicrobial effectiveness, a promising methodology to overcome the microbial resistance issue. Together with Differential Scanning Calorimetry, FT-IR spectroscopy and X-ray Powder Diffraction investigations, a molecular modeling study focused on compounds 2 and 4 showed that the S-unsubstituted compound 2/Me-β-CD complex should be more stable than S-benzyl-substituted 4/Me-β-CD. Only for 1/Me-β-CD or, particularly, 2/Me-β-CD complexes, the antibacterial effectiveness was enhanced in the presence of selected bacterial strains. The results herein presented support the mechanisms focusing on the interactions of the bacterial membrane with CD complexes more than those focusing on the improvement of dissolution properties consequent to CD complexation.
File in questo prodotto:
File Dimensione Formato  
2019 Carb Pol BTZ.pdf

solo utenti autorizzati

Dimensione 830.21 kB
Formato Adobe PDF
830.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/530028
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact