For over ten years, metallic skeletal endoprostheses have been produced in select cases by additive manufacturing (AM) and increasing awareness is driving demand for wider access to the technology. This review brings together key stakeholder perspectives on the translation of AM research; clinical application, ongoing research in the field of powder bed fusion, and the current regulatory framework. The current clinical use of AM is assessed, both on a mass-manufactured scale and bespoke application for patient specific implants. To illuminate the benefits to clinicians, a case study on the provision of custom cranioplasty is provided based on prosthetist testimony. Current progress in research is discussed, with immediate gains to be made through increased design freedom described at both meso- and macro-scale, as well as long-term goals in alloy development including bioactive materials. In all cases, focus is given to specific clinical challenges such as stress shielding and osseointegration. Outstanding challenges in industrialisation of AM are openly raised, with possible solutions assessed. Finally, overarching context is given with a review of the regulatory framework involved in translating AM implants, with particular emphasis placed on customisation within an orthopaedic remit. A viable future for AM of metal implants is presented, and it is suggested that continuing collaboration between all stakeholders will enable acceleration of the translation process.
Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants
Ginestra P.;
2019-01-01
Abstract
For over ten years, metallic skeletal endoprostheses have been produced in select cases by additive manufacturing (AM) and increasing awareness is driving demand for wider access to the technology. This review brings together key stakeholder perspectives on the translation of AM research; clinical application, ongoing research in the field of powder bed fusion, and the current regulatory framework. The current clinical use of AM is assessed, both on a mass-manufactured scale and bespoke application for patient specific implants. To illuminate the benefits to clinicians, a case study on the provision of custom cranioplasty is provided based on prosthetist testimony. Current progress in research is discussed, with immediate gains to be made through increased design freedom described at both meso- and macro-scale, as well as long-term goals in alloy development including bioactive materials. In all cases, focus is given to specific clinical challenges such as stress shielding and osseointegration. Outstanding challenges in industrialisation of AM are openly raised, with possible solutions assessed. Finally, overarching context is given with a review of the regulatory framework involved in translating AM implants, with particular emphasis placed on customisation within an orthopaedic remit. A viable future for AM of metal implants is presented, and it is suggested that continuing collaboration between all stakeholders will enable acceleration of the translation process.File | Dimensione | Formato | |
---|---|---|---|
Clinical-industrial-and-research-perspectives-on-powder-bed-fusion-additively-manufactured-metal-implants2019Additive-Manufacturing.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.