The surface of SnO2 nanowires was functionalized by chitosan for the development of room-temperature conductometric humidity sensors. SnO2 nanowires were synthesized by the seed-mediated physical-vapor-deposition (PVD) method. Chitosan layers were deposited on top of the SnO2 nanowires by spin coating. Surface morphology, crystal structure, and optical properties of the synthesized hybrid nanostructure were investigated by scanning electron microscope, grazing incidence X-ray diffraction, and UV–Vis absorption measurements. During electrical conductivity measurements, the hybrid nanostructure showed unusual behavior towards various relative humidity (RH) concentrations (25%, 50%, 75%), under UV-light irradiation, and in dark conditions. The highest sensor responses were recorded towards an RH level of 75%, resulting in 1.1 in the dark and 2.5 in a UV-irradiated chamber. A novel conduction mechanism of hybrid nanowires is discussed in detail by comparing the sensing performances of chitosan film, SnO2 nanowires, and chitosan@SnO2 hybrid nanostructures.
UV-enhanced humidity sensing of chitosan–SnO2 hybrid nanowires
Sisman O.;Kaur N.;Comini E.
2020-01-01
Abstract
The surface of SnO2 nanowires was functionalized by chitosan for the development of room-temperature conductometric humidity sensors. SnO2 nanowires were synthesized by the seed-mediated physical-vapor-deposition (PVD) method. Chitosan layers were deposited on top of the SnO2 nanowires by spin coating. Surface morphology, crystal structure, and optical properties of the synthesized hybrid nanostructure were investigated by scanning electron microscope, grazing incidence X-ray diffraction, and UV–Vis absorption measurements. During electrical conductivity measurements, the hybrid nanostructure showed unusual behavior towards various relative humidity (RH) concentrations (25%, 50%, 75%), under UV-light irradiation, and in dark conditions. The highest sensor responses were recorded towards an RH level of 75%, resulting in 1.1 in the dark and 2.5 in a UV-irradiated chamber. A novel conduction mechanism of hybrid nanowires is discussed in detail by comparing the sensing performances of chitosan film, SnO2 nanowires, and chitosan@SnO2 hybrid nanostructures.File | Dimensione | Formato | |
---|---|---|---|
UV-Enhanced Humidity Sensing of Chitosan–SnO2 Hybrid Nanowires.pdf
accesso aperto
Descrizione: full manuript
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.69 MB
Formato
Adobe PDF
|
4.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.