We prove a new upper bound on the size of codes C 1,2,3,4 with the property that every four distinct codewords in C have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most 26n/19 + o(n), that is, rate bounded asymptotically by 6/19 ≤ 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Komlós, 1984) and (Körner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.

An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

Dalai M.
;
2020-01-01

Abstract

We prove a new upper bound on the size of codes C 1,2,3,4 with the property that every four distinct codewords in C have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most 26n/19 + o(n), that is, rate bounded asymptotically by 6/19 ≤ 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Komlós, 1984) and (Körner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.
File in questo prodotto:
File Dimensione Formato  
DGR_2020.pdf

gestori archivio

Descrizione: VoR
Tipologia: Full Text
Licenza: Copyright dell'editore
Dimensione 198.33 kB
Formato Adobe PDF
198.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
DGR-TIT-accepted.pdf

accesso aperto

Descrizione: AAM
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 304.76 kB
Formato Adobe PDF
304.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/527862
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact